SVM

Data Science: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM JERRY ZHU
Can SVMs Work Here?

\[y_i (w \cdot x_i + b) \geq 1 \]
Can SVMs Work Here?

\[y_i(w \cdot x_i + b) \geq 1 \]
Trick: Allow for a few bad apples
New objective function

\[\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\xi} \xi_i^p \]

subject to \(y_i(w \cdot x_i + b) \geq 1 - \xi_i \land \xi_i \geq 0, i \in [1, m] \)
New objective function

$$\min_{w,b,\xi} \frac{1}{2}||w||^2 + C \sum_{i=1}^{\xi_i^p}$$ (2)

subject to $y_i(w \cdot x_i + b) \geq 1 - \xi_i \land \xi_i \geq 0$, $i \in [1, m]$

- **Standard margin**
New objective function

$$\min_{w, b, \xi} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\xi} \xi_i^p$$

subject to $y_i(w \cdot x_i + b) \geq 1 - \xi_i \land \xi_i \geq 0, i \in [1, m]$

- Standard margin
- How wrong a point is (slack variables)
New objective function

\[
\min_{w,b,\xi} \frac{1}{2} ||w||^2 + C \sum_{i=1} \xi_i^p
\]

subject to \(y_i (w \cdot x_i + b) \geq 1 - \xi_i \land \xi_i \geq 0 \), \(i \in [1, m] \)

- Standard margin
- How wrong a point is (slack variables)
- Tradeoff between margin and slack variables
New objective function

\[\min_{w,b,\xi} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{m} \xi_i^p \] (2)

subject to \(y_i(w \cdot x_i + b) \geq 1 - \xi_i \wedge \xi_i \geq 0, i \in [1, m] \)

- Standard margin
- How wrong a point is (slack variables)
- Tradeoff between margin and slack variables
- How bad wrongness scales
Aside: Loss Functions

- Losses measure how bad a mistake is
- Important for slack as well
Aside: Loss Functions

- Losses measure how bad a mistake is
- Important for slack as well

0/1 Loss
Aside: Loss Functions

- Losses measure how bad a mistake is
- Important for slack as well
Aside: Loss Functions

- Losses measure how bad a mistake is
- Important for slack as well
Aside: Loss Functions

- Losses measure how bad a mistake is
- Important for slack as well

We’ll focus on linear hinge loss
Wrapup

- Adding slack variables don’t break the SVM problem
- Very popular algorithm
 - SVMLight (many options)
 - Libsvm / Liblinear (very fast)
 - Weka (friendly)
 - pyml (Python focused, from Colorado)