Naïve Bayes

Data Science: Jordan Boyd-Graber
University of Maryland
MARCH 1, 2018
By the end of today …

- You’ll be able to frame many standard nlp tasks as classification problems
- Apply logistic regression (given weights) to classify data
- Learn naïve bayes from data
Formal definition of Classification

Given:
- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
Formal definition of Classification

Given:
- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
Formal definition of Classification

Given:

- A universe \mathbb{X} our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $\mathbb{C} = \{c_1, c_2, \ldots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $d \in \mathbb{X} \times \mathbb{C}$
Formal definition of Classification

Given:

- A universe X our examples can come from (e.g., English documents with a predefined vocabulary)
 - Examples are represented in this space. (e.g., each document has some subset of the vocabulary; more in a second)
- A fixed set of classes $C = \{c_1, c_2, \ldots, c_J\}$
 - The classes are human-defined for the needs of an application (e.g., spam vs. ham).
- A training set D of labeled documents with each labeled document $d \in X \times C$

Using a learning method or learning algorithm, we then wish to learn a classifier γ that maps documents to classes:

$$\gamma : X \rightarrow C$$
Topic classification

Classes:
- UK
- China
- Poultry
- Coffee
- Elections
- Sports

Training set:
- "congestion"
- "Olympics"
- "feed"
- "recount"
- "Parliament"
- "tourism"
- "pate"
- "arabica"
- "Windsor"
- "Mao"
- "bird flu"
- "Kenya"
- "TV ads"
- "team"

Test set:
- "first"
- "private"
- "Chinese"
- "airline"
- "London"
- "Beijing"
- "chicken"
- "votes"
- "Big Ben"
- "Great Wall"
- "ducks"
- "robusta"
- "Great Wall"
- "communist"
- "turkey"
- "harvest"
- "campaign"
- "captain"

\(\gamma(d') = \text{China} \)
Examples of how search engines use classification

- Standing queries (e.g., Google Alerts)
- Language identification (classes: English vs. French etc.)
- The automatic detection of spam pages (spam vs. nonspam)
- The automatic detection of sexually explicit content (sexually explicit vs. not)
- Sentiment detection: is a movie or product review positive or negative (positive vs. negative)
- Topic-specific or vertical search – restrict search to a “vertical” like “related to health” (relevant to vertical vs. not)
Classification methods: 1. Manual

- Manual classification was used by Yahoo in the beginning of the web. Also: ODP, PubMed
- Very accurate if job is done by experts
- Consistent when the problem size and team is small
- Scaling manual classification is difficult and expensive.
- → We need automatic methods for classification.
Classification methods: 2. Rule-based

- There are “IDE” type development environments for writing very complex rules efficiently. (e.g., Verity)
- Often: Boolean combinations (as in Google Alerts)
- Accuracy is very high if a rule has been carefully refined over time by a subject expert.
- Building and maintaining rule-based classification systems is expensive.
Classification methods: 3. Statistical/Probabilistic

- As per our definition of the classification problem – text classification as a learning problem
- Supervised learning of a the classification function γ and its application to classifying new documents
- We will look at a couple of methods for doing this: Naive Bayes, Logistic Regression, SVM, Decision Trees
- No free lunch: requires hand-classified training data
- But this manual classification can be done by non-experts.
Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, $p(y|x)$
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about $p(y|x)$? We need a more general framework . . .
Generative vs. Discriminative Models

- Goal, given observation x, compute probability of label y, $p(y|x)$
- Naïve Bayes (later) uses Bayes rule to reverse conditioning
- What if we care about $p(y|x)$? We need a more general framework . . .
- That framework is called logistic regression (later)
- Naïve Bayes is a special case of logistic regression
A Classification Problem

- Suppose that I have two coins, C_1 and C_2
- Now suppose I pull a coin out of my pocket, flip it a bunch of times, record the coin and outcomes, and repeat many times:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C1: 0 1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1: 1 1 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: 1 0 0 0 0 0 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1: 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1: 1 1 0 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: 0 0 1 1 0 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2: 1 0 0 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Now suppose I am given a new sequence, 0 0 1; which coin is it from?
A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1)$, $P(C_2)$
- Also easy to get $P(X_i = 1 \mid C_1)$ and $P(X_i = 1 \mid C_2)$
- By conditional independence,

\[
P(X = 010 \mid C_1) = P(X_1 = 0 \mid C_1)P(X_2 = 1 \mid C_1)P(X_2 = 0 \mid C_1)
\]

- Can we use these to get $P(C_1 \mid X = 001)$?
A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1) = 4/7$, $P(C_2) = 3/7$
- Also easy to get $P(X_i = 1 \, | \, C_1)$ and $P(X_i = 1 \, | \, C_2)$
- By conditional independence,

$$P(X = 010 \, | \, C_1) = P(X_1 = 0 \, | \, C_1)P(X_2 = 1 \, | \, C_1)P(X_2 = 0 \, | \, C_1)$$

- Can we use these to get $P(C_1 \, | \, X = 001)$?
Motivating Naïve Bayes Example

A Classification Problem

This problem has particular challenges:

- different numbers of covariates for each observation
- number of covariates can be large

However, there is some structure:

- Easy to get $P(C_1) = 4/7$, $P(C_2) = 3/7$
- Also easy to get $P(X_i = 1 | C_1) = 12/16$ and $P(X_i = 1 | C_2) = 6/18$
- By conditional independence,

$$P(X = 010 | C_1) = P(X_1 = 0 | C_1)P(X_2 = 1 | C_1)P(X_2 = 0 | C_1)$$

- Can we use these to get $P(C_1 | X = 001)$?
A Classification Problem

Summary: have \(P(data|class) \), want \(P(class|data) \)

Solution: Bayes’ rule!

\[
P(class|data) = \frac{P(data|class)P(class)}{P(data)} = \frac{P(data|class)P(class)}{\sum_{class=1}^{C} P(data|class)P(class)}
\]

To compute, we need to estimate \(P(data|class) \), \(P(class) \) for all classes.
Naive Bayes Classifier

This works because the coin flips are independent given the coin parameter. What about this case:

- want to identify the type of fruit given a set of features: color, shape and size
- color: red, green, yellow or orange (discrete)
- shape: round, oval or long+skinny (discrete)
- size: diameter in inches (continuous)
Naive Bayes Classifier

Conditioned on type of fruit, these features are not necessarily independent:

Given category “apple,” the color “green” has a higher probability given “size < 2”:

\[
P(\text{green} | \text{size} < 2, \text{apple}) > P(\text{green} | \text{apple})
\]
Motivating Naïve Bayes Example

Naive Bayes Classifier

Using chain rule,

\[
P(\text{apple} | \text{green, round, size} = 2) = \frac{P(\text{green, round, size} = 2 | \text{apple}) P(\text{apple})}{\sum_{\text{fruits}} P(\text{green, round, size} = 2 | \text{fruit j}) P(\text{fruit j})} \\
\propto P(\text{green} | \text{round, size} = 2, \text{apple}) P(\text{round} | \text{size} = 2, \text{apple}) \\
\times P(\text{size} = 2 | \text{apple}) P(\text{apple})
\]

But computing conditional probabilities is hard! There are many combinations of \((\text{color, shape, size})\) for each fruit.
Naive Bayes Classifier

Idea: assume conditional independence for all features given class,

\[P(\text{green} | \text{round}, \text{size} = 2, \text{apple}) = P(\text{green} | \text{apple}) \]
\[P(\text{round} | \text{green}, \text{size} = 2, \text{apple}) = P(\text{round} | \text{apple}) \]
\[P(\text{size} = 2 | \text{green}, \text{round}, \text{apple}) = P(\text{size} = 2 | \text{apple}) \]
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)$$
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document \(d \) being in a class \(c \) as follows:

\[
P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c)
\]
The Naive Bayes classifier

- The Naive Bayes classifier is a probabilistic classifier.
- We compute the probability of a document d being in a class c as follows:

$$ P(c|d) \propto P(c) \prod_{1 \leq i \leq n_d} P(w_i|c) $$

- n_d is the length of the document. (number of tokens)
- $P(w_i|c)$ is the conditional probability of term w_i occurring in a document of class c
- $P(w_i|c)$ as a measure of how much evidence w_i contributes that c is the correct class.
- $P(c)$ is the prior probability of c.
- If a document’s terms do not provide clear evidence for one class vs. another, we choose the c with higher $P(c)$.
Maximum a posteriori class

- Our goal is to find the “best” class.
- The best class in Naive Bayes classification is the most likely or maximum a posteriori (MAP) class c_{map}:

\[
c_{\text{map}} = \arg\max_{c_j \in C} \hat{P}(c_j | d) = \arg\max_{c_j \in C} \hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j)
\]

- We write \hat{P} for P since these values are estimates from the training set.
Naive Bayes Classifier

Why conditional independence?

- estimating multivariate functions (like $P(X_1, \ldots, X_m \mid Y)$) is mathematically hard, while estimating univariate ones is easier (like $P(X_i \mid Y)$)
- need less data to fit univariate functions well
- univariate estimators differ much less than multivariate estimator (low variance)
- ... but they may end up finding the wrong values (more bias)
Naïve Bayes conditional independence assumption

To reduce the number of parameters to a manageable size, recall the Naïve Bayes conditional independence assumption:

\[
P(d|c_j) = P(\langle w_1, \ldots, w_{n_d}\rangle|c_j) = \prod_{1 \leq i \leq n_d} P(X_i = w_i|c_j)
\]

We assume that the probability of observing the conjunction of attributes is equal to the product of the individual probabilities \(P(X_i = w_i|c_j)\).

Our estimates for these priors and conditional probabilities: \(\hat{P}(c_j) = \frac{N_c + 1}{N + |C|}\)

and \(\hat{P}(w|c) = \frac{T_{cw} + 1}{\left(\sum_{w' \in V} T_{cw'}\right) + |V|}\)
Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \lg is logarithm base 2; \ln is logarithm base e.

\[
\lg x = a \iff 2^a = x \quad \ln x = a \iff e^a = x
\]

(1)

- Since $\ln(xy) = \ln(x) + \ln(y)$, we can sum log probabilities instead of multiplying probabilities.
- Since \ln is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

\[
\begin{align*}
 c_{\text{map}} &= \arg \max_{c_j \in \mathcal{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right] \\
 \arg \max_{c_j \in \mathcal{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]
\end{align*}
\]
Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \lg is logarithm base 2; \ln is logarithm base e.

\[
\begin{align*}
\lg x = a & \iff 2^a = x \\
\ln x = a & \iff e^a = x
\end{align*}
\]

- Since $\ln(xy) = \ln(x) + \ln(y)$, we can sum log probabilities instead of multiplying probabilities.
- Since \ln is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

\[
\begin{align*}
c_{\text{map}} &= \arg \max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right] \\
&= \arg \max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]
\end{align*}
\]
Implementation Detail: Taking the log

- Multiplying lots of small probabilities can result in floating point underflow.
- From last time \(\log \) is logarithm base 2; \(\ln \) is logarithm base \(e \).

\[
\log x = a \iff 2^a = x \quad \ln x = a \iff e^a = x
\]

\((1) \)

- Since \(\ln(xy) = \ln(x) + \ln(y) \), we can sum log probabilities instead of multiplying probabilities.
- Since \(\ln \) is a monotonic function, the class with the highest score does not change.
- So what we usually compute in practice is:

\[
c_{\text{map}} = \arg \max_{c_j \in \mathbb{C}} \left[\hat{P}(c_j) \prod_{1 \leq i \leq n_d} \hat{P}(w_i | c_j) \right]
\]

\[
\arg \max_{c_j \in \mathbb{C}} \left[\ln \hat{P}(c_j) + \sum_{1 \leq i \leq n_d} \ln \hat{P}(w_i | c_j) \right]
\]
Contrasting Naïve Bayes and Logistic Regression

- Naïve Bayes easier
- Naïve Bayes better on smaller datasets
- Logistic regression better on medium-sized datasets
- On huge datasets, it doesn’t really matter (data always win)
 - Optional reading by Ng and Jordan has proofs and experiments
- Logistic regression allows arbitrary features (biggest difference!)