Inexact Search is “Good Enough”

Advanced Machine Learning for NLP
Jordan Boyd-Graber
MATHEMATICAL TREATMENT
Preliminaries: algorithm, separability

• Structured perceptron maintains set of “wrong features”

\[
\Delta \Phi(x, y, z) \equiv \Phi(x, y) - \Phi(x, z)
\]

(1)

• Structured perceptron updates weights with

\[
\tilde{w} \leftarrow \tilde{w} + \Delta \Phi(x, y, z)
\]

(2)

• Dataset \(D \) is linearly separable under features \(\Phi \) with margin \(\delta \) if

\[
\tilde{u} \cdot \Delta \Phi(x, y, z) \geq \delta \quad \forall x, y, z \in D
\]

(3)

given some oracle unit vector \(u \).
Violations vs. Errors

- It may be difficult to find the highest scoring hypothesis
- It’s okay as long as inference finds a violation

\[\vec{w} \cdot \Delta \Phi(x, y, z) \leq 0 \]

(4)

- This means that \(y \) might not be answer algorithm gives (i.e., wrong)
Limited number of mistakes

- Define diameter R as

\[R = \max_{(x,y,z)} ||\Delta \Phi(x,y,z)|| \]

(5)
Limited number of mistakes

- Define diameter R as

$$R = \max_{(x,y,z)} ||\Delta \tilde{\Phi}(x,y,z)||$$ \hspace{1cm} (5)

- Weight vector \tilde{w} grows with each error

- We can prove that $||\tilde{w}||$ can’t get too big

- And thus, algorithm can only run for limited number of iterations k where it updates weights

- Indeed, we’ll bound it from two directions

$$k^2 \delta^2 \leq ||w^{(k+1)}||^2 \leq kR^2$$ \hspace{1cm} (6)
Lower Bound

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \]

(7)
Lower Bound

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \]

\[\tilde{w}^{(k+1)} = w^{(k)} + \Delta \tilde{\Phi}(x, y, z) \]

Update equation
Lower Bound

\[k^2 \delta^2 \leq \|w^{(k+1)}\|^2 \]

\[\tilde{w}^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z) \quad (7) \]

\[\tilde{u} \cdot \tilde{w}^{(k+1)} = \tilde{u} \cdot w^{(k)} + \tilde{u} \cdot \Delta \Phi(x, y, z) \quad (8) \]

\[(9) \]

Multiply both sides by \(\tilde{u} \)
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]

\[\hat{w}^{(k+1)} = w^{(k)} + \Delta \Phi(x, y, z) \] (7)

\[\hat{u} \cdot \hat{w}^{(k+1)} = \hat{u} \cdot w^{(k)} + \hat{u} \cdot \Delta \Phi(x, y, z) \] (8)

\[\hat{u} \cdot \hat{w}^{(k+1)} \geq \hat{u} \cdot w^{(k)} + \delta \] (9)

Definition of margin
Lower Bound

\[k^2 \delta^2 \leq \| \mathbf{w}^{(k+1)} \|^2 \]

\[\mathbf{w}^{(k+1)} = \mathbf{w}^{(k)} + \Delta \mathbf{\Phi}(x, y, z) \]

\[\mathbf{u} \cdot \mathbf{w}^{(k+1)} = \mathbf{u} \cdot \mathbf{w}^{(k)} + \mathbf{u} \cdot \Delta \mathbf{\Phi}(x, y, z) \]

\[\mathbf{u} \cdot \mathbf{w}^{(k+1)} \geq \mathbf{u} \cdot \mathbf{w}^{(k)} + \delta \]

By induction, \(\mathbf{u} \cdot \mathbf{w}^{(k+1)} \geq k \delta \) (Base case: \(\mathbf{w}^0 = \mathbf{0} \))
Lower Bound

\[k^2 \delta^2 \leq ||w^{(k+1)}||^2 \]

\[\hat{u} \cdot \hat{w}^{(k+1)} \geq \hat{u} \cdot w^{(k)} + \delta \] \hspace{1cm} (7)

By induction, \(\hat{u} \cdot \hat{w}^{(k+1)} \geq k\delta \) (Base case: \(\hat{w}^0 = \tilde{0} \))

\[||\hat{u}|| \cdot ||\hat{w}^{(k+1)}|| \geq \hat{u} \cdot \hat{w} \geq k\delta \] \hspace{1cm} (8)

For any vectors, \(||\tilde{a}|| \cdot ||\tilde{b}|| \geq a \cdot b \)
Lower Bound

\[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \]

\[\hat{u} \cdot \hat{w}^{(k+1)} \geq \hat{u} \cdot w^{(k)} + \delta \]

(7)

By induction, \(\hat{u} \cdot \hat{w}^{(k+1)} \geq k\delta \) (Base case: \(\hat{w}^0 = \hat{0} \))

\[\| \hat{u} \| \| \hat{w}^{(k+1)} \| \geq \hat{u} \cdot \hat{w} \geq k\delta \]

(8)

\[\| \hat{w}^{(k+1)} \| \geq k\delta \]

(9)

\(\hat{u} \) is a unit vector
Lower Bound

\[k^2 \delta^2 \leq \|w^{(k+1)}\|^2 \]

\[\vec{u} \cdot \vec{w}^{(k+1)} \geq \vec{u} \cdot \vec{w}^{(k)} + \delta \] \hspace{1cm} (7)

By induction, \(\vec{u} \cdot \vec{w}^{(k+1)} \geq k\delta \) (Base case: \(\vec{w}^0 = \vec{0} \))

\[\|\vec{u}\| \|\vec{w}^{(k+1)}\| \geq \vec{u} \cdot \vec{w} \geq k\delta \] \hspace{1cm} (8)

\[\|\vec{w}^{(k+1)}\| \geq k\delta \] \hspace{1cm} (9)

\[\|\vec{w}^{(k+1)}\|^2 \geq k^2 \delta^2 \] \hspace{1cm} (10)

Square both sides, and we’re done!
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \]

(11)
Upper Bound

\[
\|\mathbf{w}^{(k+1)}\|^2 \leq kR^2 \\
\] (11)

\[
\|\mathbf{w}^{(k+1)}\|^2 = \|\mathbf{w}^{(k)} + \Delta \Phi(x, y, z)\|^2 \\
\] (12)

Update rule
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \] (11)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} + \Delta \hat{\Phi}(x, y, z) \|^2 \] (12)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} \|^2 + \| \Delta \hat{\Phi}(x, y, z) \|^2 + 2 \hat{w}^{(k)} \cdot \Delta \hat{\Phi}(x, y, z) \] (13)

Law of cosines
Upper Bound

\[\|\mathbf{w}^{(k+1)}\|^2 \leq kR^2 \] \hfill (11)

\[\|\mathbf{w}^{(k+1)}\|^2 = \|\mathbf{w}^{(k)} + \Delta \mathbf{\Phi}(x, y, z)\|^2 \] \hfill (12)

\[\|\mathbf{w}^{(k+1)}\|^2 = \|\mathbf{w}^{(k)}\|^2 + \|\Delta \mathbf{\Phi}(x, y, z)\|^2 + 2\mathbf{w}^{(k)} \cdot \Delta \mathbf{\Phi}(x, y, z) \] \hfill (13)

\[\|\mathbf{w}^{(k+1)}\|^2 \leq \|\mathbf{w}^{(k)}\|^2 + R^2 + 2\mathbf{w}^{(k)} \cdot \Delta \mathbf{\Phi}(x, y, z) \] \hfill (14)

Definition of diameter
Upper Bound

\[\| \hat{w}^{(k+1)} \|^2 \leq kR^2 \] \hspace{1cm} (11)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} + \Delta \tilde{\Phi}(x, y, z) \|^2 \] \hspace{1cm} (12)

\[\| \hat{w}^{(k+1)} \|^2 = \| \hat{w}^{(k)} \|^2 + \| \Delta \tilde{\Phi}(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \tilde{\Phi}(x, y, z) \] \hspace{1cm} (13)

\[\| \hat{w}^{(k+1)} \|^2 \leq \| \hat{w}^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Delta \tilde{\Phi}(x, y, z) \] \hspace{1cm} (14)

\[\| \hat{w}^{(k+1)} \|^2 \leq \| \hat{w}^{(k)} \|^2 + R^2 + 0 \] \hspace{1cm} (15)

If violation
Upper Bound

\[\| \mathbf{w}^{(k+1)} \|^2 \leq kR^2 \quad (11) \]

\[\| \mathbf{w}^{(k+1)} \|^2 = \| \mathbf{w}^{(k)} + \Delta \Phi(x, y, z) \|^2 \quad (12) \]

\[\| \mathbf{w}^{(k+1)} \|^2 = \| \mathbf{w}^{(k)} \|^2 + \| \Delta \Phi(x, y, z) \|^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \quad (13) \]

\[\| \mathbf{w}^{(k+1)} \|^2 \leq \| \mathbf{w}^{(k)} \|^2 + R^2 + 2w^{(k)} \cdot \Delta \Phi(x, y, z) \quad (14) \]

\[\| \mathbf{w}^{(k+1)} \|^2 \leq \| \mathbf{w}^{(k)} \|^2 + R^2 + 0 \quad (15) \]

\[\| \mathbf{w}^{(k+1)} \|^2 \leq kR^2 \quad (16) \]

Induction!
Putting it together

• Sandwich:

\[k^2 \delta^2 \leq \|w^{(k+1)}\|^2 \leq kR^2 \]

(17)

• Solve for \(k \):

\[k \leq R^2 \delta^2 \]

(18)

• What does this mean?

◦ Limited number of errors (updates)

 ◦ Larger diameter increases errors (worst possible mistake)

 ◦ Larger margin decreases errors (bigger separation from wrong answer)

• Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

- **Sandwich:**
 \[k^2 \delta^2 \leq \| w^{(k+1)} \|^2 \leq kR^2 \]
 \[(17) \]

- **Solve for** \(k \):
 \[k \leq \frac{R^2}{\delta^2} \]
 \[(18) \]

- **What does this mean?**
 - Limited number of errors (updates)
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)
 - Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

- Sandwich:
 \[k^2 \bar{\delta}^2 \leq \|w^{(k+1)}\|^2 \leq kR^2 \] \hspace{1cm} (17)

- Solve for \(k \):
 \[k \leq \frac{R^2}{\bar{\delta}^2} \] \hspace{1cm} (18)

- What does this mean?

 - Limited number of errors (updates)
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)

 - Finding the largest violation wrong answer is best (but any violation okay)
Putting it together

- **Sandwich:**
 \[k^2 \delta^2 \leq \|w^{(k+1)}\|^2 \leq kR^2 \] (17)

- Solve for \(k \):
 \[k \leq \frac{R^2}{\delta^2} \] (18)

- **What does this mean?**
- **Limited number of errors (updates)**
 - Larger diameter increases errors (worst possible mistake)
 - Larger margin decreases errors (bigger separation from wrong answer)
- **Finding the largest violation wrong answer is best (but any violation okay)
In Practice

Harder the search space, the more max violation helps