Machine Translation: Decoding

Jordan Boyd-Graber
University of Colorado Boulder
17. NOVEMBER 2014

Adapted from material by Philipp Koehn
Decoding

- We have a mathematical model for translation
 \[p(e|f) \]

- Task of decoding: find the translation \(e_{\text{best}} \) with highest probability
 \[e_{\text{best}} = \arg \max_e p(e|f) \]

- Two types of error
 - the most probable translation is bad \(\rightarrow \) fix the model
 - search does not find the most probably translation \(\rightarrow \) fix the search

- Decoding is evaluated by search error, not quality of translations (although these are often correlated)
Translation Process

- Task: translate this sentence from German into English

er geht ja nicht nach hause
Translation Process

- Task: translate this sentence from German into English

 er geht ja nicht nach hause

 er

 he

- Pick phrase in input, translate
Translation Process

- Task: translate this sentence from German into English

 er geht ja nicht nach hause

- Pick phrase in input, translate
 - it is allowed to pick words out of sequence reordering
 - phrases may have multiple words: many-to-many translation
Task: translate this sentence from German into English

```
er geht ja nicht nach hause
```

```
er geht ja nicht
```

```
he does not go
```

Pick phrase in input, translate
Translation Process

- Task: translate this sentence from German into English

- Pick phrase in input, translate

er geht ja nicht nach hause
he does not go home
Computing Translation Probability

• Probabilistic model for phrase-based translation:

\[e_{\text{best}} = \arg\max_e \prod_{i=1}^{l} \phi(e_i | \bar{f}_i) \cdot d(\text{start}_i - \text{end}_{i-1} - 1) \cdot p_{\text{LM}}(e) \]

• Score is computed incrementally for each partial hypothesis

• Components

 Phrase translation Picking phrase \(\bar{f}_i \) to be translated as a phrase \(\bar{e}_i \)

 \[\rightarrow \text{look up score } \phi(\bar{f}_i | \bar{e}_i) \text{ from phrase translation table} \]

 Reordering Previous phrase ended in \(\text{end}_{i-1} \), current phrase starts at \(\text{start}_i \)

 \[\rightarrow \text{compute } d(\text{start}_i - \text{end}_{i-1} - 1) \]

 Language model For \(n \)-gram model, need to keep track of last \(n - 1 \) words

 \[\rightarrow \text{compute score } p_{\text{LM}}(w_i | w_{i-(n-1)}, \ldots, w_{i-1}) \text{ for added words } w_i \]
Many translation options to choose from

- in Europarl phrase table: 2727 matching phrase pairs for this sentence
- by pruning to the top 20 per phrase, 202 translation options remain
The machine translation decoder does not know the right answer

- picking the right translation options
- arranging them in the right order

Search problem solved by heuristic beam search
Decoding: Precompute Translation Options

consult phrase translation table for all input phrases
Decoding: Start with Initial Hypothesis

initial hypothesis: no input words covered, no output produced
Decoding: Hypothesis Expansion

pick any translation option, create new hypothesis
Decoding: Hypothesis Expansion

create hypotheses for all other translation options
Decoding: Hypothesis Expansion

also create hypotheses from created partial hypothesis
Decoding: Find Best Path

backtrack from highest scoring complete hypothesis
Computational Complexity

- The suggested process creates exponential number of hypothesis
- Machine translation decoding is NP-complete
- Reduction of search space:
 - recombination (risk-free)
 - pruning (risky)
Recombination

- Two hypothesis paths lead to two matching hypotheses
 - same number of foreign words translated
 - same English words in the output
 - different scores

- Worse hypothesis is dropped
Recombination

- Two paths lead to hypotheses subsequently indistinguishable
 - same number of foreign words translated
 - same last two English words in output (assuming trigram language model)
 - same last foreign word translated
 - different scores

- Worse hypothesis is dropped
Restrictions on Recombination

- **Translation model:** Phrase translation independent from each other

 → no restriction to hypothesis recombination

- **Language model:** Last $n-1$ words used as history in n-gram language model

 → recombined hypotheses must match in their last $n-1$ words

- **Reordering model:** Distance-based reordering model based on distance to end position of previous input phrase

 → recombined hypotheses must have that same end position

- Other feature function may introduce additional restrictions
Pruning

- Recombination reduces search space, but not enough (we still have a NP complete problem on our hands)
- Pruning: remove bad hypotheses early
 - put comparable hypothesis into stacks (hypotheses that have translated same number of input words)
 - limit number of hypotheses in each stack
Hypothesis expansion in a stack decoder

- Translation option is applied to hypothesis
- New hypothesis is dropped into a stack further down
Stack Decoding Algorithm

1: place empty hypothesis into stack 0
2: for all stacks 0…n – 1 do
3: for all hypotheses in stack do
4: for all translation options do
5: if applicable then
6: create new hypothesis
7: place in stack
8: recombine with existing hypothesis if possible
9: prune stack if too big
Pruning

- Pruning strategies
 - histogram pruning: keep at most k hypotheses in each stack
 - stack pruning: keep hypothesis with score $\alpha \times$ best score ($\alpha < 1$)

- Computational time complexity of decoding with histogram pruning

 $O(\text{max stack size} \times \text{translation options} \times \text{sentence length})$

- Number of translation options is linear with sentence length, hence:

 $O(\text{max stack size} \times \text{sentence length}^2)$

- Quadratic complexity
Reordering Limits

- Limiting reordering to maximum reordering distance
- Typical reordering distance 5–8 words
 - depending on language pair
 - larger reordering limit hurts translation quality
- Reduces complexity to linear

\[O(\text{max stack size} \times \text{sentence length}) \]

- Speed / quality trade-off by setting maximum stack size
Translating the Easy Part First?

the tourism initiative addresses this for the first time

both hypotheses translate 3 words
worse hypothesis has better score
Estimating Future Cost

- Future cost estimate: how expensive is translation of rest of sentence?
- Optimistic: choose cheapest translation options
- Cost for each translation option
 - **translation model**: cost known
 - **language model**: output words known, but not context
 - estimate without context
 - **reordering model**: unknown, ignored for future cost estimation
Cost Estimates from Translation Options

The tourism initiative addresses this for the first time.

The cost estimates are as follows:

-1.0 -2.0 -1.5 -2.4

-1.4 -1.0 -1.0 -1.9 -1.6

Cost of cheapest translation options for each input span (log-probabilities)
Cost Estimates for all Spans

- Cost estimate for all contiguous spans (cheapest options)

<table>
<thead>
<tr>
<th>first word</th>
<th>future cost estimate for (n) words (from first)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>tourism</td>
<td>-2.0</td>
</tr>
<tr>
<td>initiative</td>
<td>-1.5</td>
</tr>
<tr>
<td>addresses</td>
<td>-2.4</td>
</tr>
<tr>
<td>this</td>
<td>-1.4</td>
</tr>
<tr>
<td>for</td>
<td>-1.0</td>
</tr>
<tr>
<td>the</td>
<td>-1.0</td>
</tr>
<tr>
<td>first</td>
<td>-1.9</td>
</tr>
<tr>
<td>time</td>
<td>-1.6</td>
</tr>
</tbody>
</table>

- Function words cheap (the: -1.0) vs. content (tourism: -2.0)
- Common phrases cheaper (for the first time: -2.3) vs. unusual (tourism initiative addresses: -5.9)
Combining Score and Future Cost

- Hypothesis score and future cost estimate are combined for pruning
 - left hypothesis starts with hard part: the tourism initiative
 score: -5.88, future cost: -6.1 → total cost -11.98
 - middle hypothesis starts with easiest part: the first time
 score: -4.11, future cost: -9.3 → total cost -13.41
 - right hypothesis picks easy parts: this for ... time
 score: -4.86, future cost: -9.1 → total cost -13.96
Other Decoding Algorithms

- A* search
- Greedy hill-climbing
- Using finite state transducers (standard toolkits)
A* Search

- Uses *admissible* future cost heuristic: never overestimates cost
- Translation agenda: create hypothesis with lowest score + heuristic cost
- Done, when complete hypothesis created
Greedy Hill-Climbing

- Create one complete hypothesis with depth-first search (or other means)
- Search for better hypotheses by applying change operators
 - change the translation of a word or phrase
 - combine the translation of two words into a phrase
 - split up the translation of a phrase into two smaller phrase translations
 - move parts of the output into a different position
 - swap parts of the output with the output at a different part of the sentence
- Terminates if no operator application produces a better translation
Summary

- Translation process: produce output left to right
- Translation options
- Decoding by hypothesis expansion
- Reducing search space
 - recombination
 - pruning (requires future cost estimate)
- Other decoding algorithms