Chinese Restaurants and Backoff

Natural Language Processing: Jordan Boyd-Graber
University of Colorado Boulder
SEPTEMBER 10, 2014
After this class, you’ll be able to:

- Understand probability distributions through the metaphor of the Chinese Restaurant Process
- Be able to calculate Kneser-Ney smoothing
- Understand the role of contexts in language models
Intuition

- Some words are “sticky”
- “San Francisco” is very common (high ungram)
- But Francisco only appears after one word
Intuition

- Some words are “sticky”
- “San Francisco” is very common (high ungram)
- But Francisco only appears after one word
- Our goal: to tell a statistical story of bay area restaurants to account for this phenomenon
How does a CRP encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities
How does a crp encode a probability distribution?

Let’s remember what a language model is

- It is a distribution over the next word in a sentence
- Given the previous $n-1$ words
Let’s remember what a language model is

- It is a distribution over the next word in a sentence
- Given the previous \(n - 1 \) words
- The challenge: backoff and sparsity
The Chinese Restaurant as a Distribution

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.
How does a crp encode a probability distribution?

The Chinese Restaurant as a Distribution

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

2/7

3/7

2/7

Natural Language Processing: Jordan Boyd-Graber | Boulder

Chinese Restaurants and Backoff | 6 of 18
How does a crp encode a probability distribution?

The Chinese Restaurant as a Distribution

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.
The Chinese Restaurant as a Distribution

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

\[
\begin{align*}
&\text{dog} & \frac{2}{7} \\
&\text{cat} & \frac{3}{7} \\
&\text{purple} & \frac{2}{7}
\end{align*}
\]
The Chinese Restaurant as a Distribution

To generate a word, you first sit down at a table. You sit down at a table proportional to the number of people sitting at the table.

- $\frac{2}{7}$ dog
- $\frac{3}{7}$ cat
- $\frac{2}{7}$ purple

But this is just Maximum Likelihood

Why are we talking about Chinese Restaurants?
How does a crp encode a probability distribution?

Always one more table . . .
How does a crp encode a probability distribution?

Always one more table . . .

\[
\begin{align*}
\frac{2}{7+\alpha} & \\
\frac{3}{7+\alpha} & \\
\frac{2}{7+\alpha} & \\
\frac{\alpha}{7+\alpha} &
\end{align*}
\]
How does a crp encode a probability distribution?

Always one more table . . .

\[
\begin{align*}
\frac{2}{7+\alpha} & \quad \text{dog} \\
\frac{3}{7+\alpha} & \quad \text{cat} \\
\frac{2}{7+\alpha} & \quad \text{purple} \\
\frac{\alpha}{7+\alpha} & \quad ???
\end{align*}
\]
How does a crp encode a probability distribution?

Always one more table . . .

\[
\begin{align*}
\frac{2}{7+\alpha} & \quad \text{dog} \\
\frac{3}{7+\alpha} & \quad \text{cat} \\
\frac{2}{7+\alpha} & \quad \text{purple} \\
\frac{\alpha}{7+\alpha} & \quad ???
\end{align*}
\]
How does a crp encode a probability distribution?

What to do with a new table?

- Uniform (Dirichlet smoothing)
- Specific contexts
 - less-specific contexts (backoff)
How does a crp encode a probability distribution?

What to do with a new table?

What can be a base distribution?

- Uniform (Dirichlet smoothing)
How does a crp encode a probability distribution?

What to do with a new table?

What can be a base distribution?

- Uniform (Dirichlet smoothing)
- Specific contexts \rightarrow less-specific contexts (backoff)
How do many CRPs encode backoff?

Outline

How does a CRP encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities
How do many CRPs encode backoff?

A hierarchy of Chinese Restaurants
Seating Assignments
Dataset:

<s> a a a b a c </s>
How do many crps encode backoff?

Seating Assignments

Dataset:

<\s> a a a b a c </\s>

Unigram Restaurant

<\s> Restaurant

a Restaurant

b Restaurant

c Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<s> Restaurant

* 1

b Restaurant

a Restaurant

c Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<star> 1

<s> Restaurant

<star> 1

a Restaurant
c Restaurant

b Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

```
<s> a a a b a c </s>
```

<table>
<thead>
<tr>
<th>Unigram Restaurant</th>
<th>Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a 1</td>
<td>a Restaurant</td>
</tr>
<tr>
<td>b Restaurant</td>
<td>c Restaurant</td>
</tr>
</tbody>
</table>

11 of 18
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

- a 1

Unigram Restaurant

- a 1

- * 1

b Restaurant
c Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>1</td>
</tr>
</tbody>
</table>
How do many CRPs encode backoff?

Seating Assignments

Dataset:

\[
<s> \text{a a a b a c} \langle/s>
\]

<table>
<thead>
<tr>
<th>Unigram Restaurant</th>
<th>Restaurant a</th>
<th>Restaurant b</th>
<th>Restaurant c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (^2)</td>
<td>a (^1)</td>
<td>a (^1)</td>
<td>c Restaurant</td>
</tr>
</tbody>
</table>
Seating Assignments

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
</tbody>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

b Restaurant

c Restaurant
How do many crps encode backoff?

Seating Assignments

Dataset:

\[
\begin{array}{cccccc}
<s> & a & a & a & b & a & c \end{array}
\]

<table>
<thead>
<tr>
<th>Unigram Restaurant</th>
<th><s> Restaurant</th>
<th>a Restaurant</th>
<th>b Restaurant</th>
<th>c Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (^2)</td>
<td>a (^1)</td>
<td>a (^2)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How do many crps encode backoff?

Seating Assignments

Dataset:

\(<s>\ a\ a\ a\ b\ a\ c\ </s>\)

Unigram Restaurant

- Restaurant
 - a
 - b
 - c

a Restaurant

- a
- *

b Restaurant

c Restaurant
Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
</tr>
</tbody>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

b Restaurant

<table>
<thead>
<tr>
<th>Restaurant</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
</tr>
<tr>
<td>*</td>
<td>1</td>
</tr>
</tbody>
</table>

c Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

a² b¹

Restaurant

a¹

b Restaurant

a² *¹

c Restaurant
Seating Assignments

Dataset:

$$\text{<s> a a a b a c </s>}$$

<table>
<thead>
<tr>
<th>Unigram Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><s> Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a (2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>b Restaurant</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>c Restaurant</th>
</tr>
</thead>
</table>

How do many CRPs encode backoff?

Seating Assignments

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

b Restaurant

c Restaurant
How do many crps encode backoff?

Seating Assignments

Dataset:

\[<s> \, a \, a \, a \, b \, a \, c \, </s> \]

Unigram Restaurant

\[
\begin{array}{c}
\text{a}^2 \\
\text{b}^1
\end{array}
\]

<s> Restaurant

\[
\begin{array}{c}
\text{a}^1
\end{array}
\]

b Restaurant

\[
\begin{array}{c}
\ast^1
\end{array}
\]

a Restaurant

\[
\begin{array}{c}
\text{a}^2 \\
\text{b}^1
\end{array}
\]

c Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<s> Restaurant

\begin{array}{c}
\text{a}^1 \\
\text{b}^1
\end{array}

\begin{array}{c}
\text{a}^2 \\
\text{b}^1
\end{array}

\begin{array}{c}
\text{a}^1 \\
\text{b}^1
\end{array}

\begin{array}{c}
\text{a}^2 \\
\text{b}^1
\end{array}

\begin{array}{c}
\text{*}^1 \\
\text{c}^1
\end{array}

\end{array}

Natural Language Processing: Jordan Boyd-Graber | Boulder
Chinese Restaurants and Backoff | 11 of 18
Seating Assignments

Dataset:

\[
\langle s \rangle \ a \ a \ a \ b \ a \ c \ \langle /s \rangle
\]

Unigram Restaurant

- \(a \): 3
- \(b \): 1

Restaurant

- \(a \): 1

Chinese Restaurants and Backoff
How do many crps encode backoff?

Seating Assignments

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

| a 3 |
| b 1 |

Restaurant

| a 1 |

Restaurant

| a 2 |
| b 1 |

c Restaurant

| a 1 |

Natural Language Processing: Jordan Boyd-Graber | Boulder
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

| a | 3 |
| b | 1 |

Restaurant

| a | 1 |

Restaurant

a	2
b	1
*	1

Restaurant

| a | 1 |

Restaurant

| a | 1 |
Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

Unigram Restaurant
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```

<s> Restaurant

```
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
```

b Restaurant

```
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
```

c Restaurant

```
<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
```
Seating Assignments

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Restaurant

<s> Restaurant

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

b Restaurant

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

a Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

c Restaurant
How many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th></th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

b Restaurant

<table>
<thead>
<tr>
<th></th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
</tbody>
</table>

da Restaurant

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
c Restaurant

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>1</td>
</tr>
</tbody>
</table>
How do many crps encode backoff?

Seating Assignments

Dataset:

<s> a a a b a c </s>

Unigram Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Restaurant

<s> Restaurant

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Restaurant

<table>
<thead>
<tr>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Restaurant

<table>
<thead>
<tr>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
How do many crps encode backoff?

Seating Assignments
Dataset:

<s> a a a b a c </s>

Unigram Restaurant

Restaurant

b Restaurant

c Restaurant
Outline

How does a CRP encode a probability distribution?

How do many CRPs encode backoff?

Language Model Probabilities
The rich get richer

\[\frac{2}{5+\theta} \quad \frac{3}{5+\theta} \quad \frac{\theta}{5+\theta} \]
Computing the Probability of an Observation

\[
p(w = x | \tilde{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,x}} \cdot \text{existing table} + \frac{\theta}{\theta + c_{u,x}} p(w = x | \tilde{s}, \theta, \pi(u)) \tag{1}
\]

- Word type \(x \)
- Seating assignments \(\tilde{s} \)
- Concentration \(\theta \)
- Context \(u \)
- Number seated at table serving \(x \) in restaurant \(u, c_{u,x} \)
- Number seated at all tables in restaurant \(u, c_{u,x} \)
- The backoff context \(\pi(u) \)
Computing the Probability of an Observation

\[
p(w = x|\vec{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,\cdot}} + \frac{\theta}{\theta + c_{u,\cdot}} p(w = x|\vec{s}, \theta, \pi(u))
\]

1. Word type \(x\)
2. Seating assignments \(\vec{s}\)
3. Concentration \(\theta\)
4. Context \(u\)
5. Number seated at table serving \(x\) in restaurant \(u\), \(c_{u,x}\)
6. Number seated at all tables in restaurant \(u\), \(c_{u,\cdot}\)
7. The backoff context \(\pi(u)\)
Computing the Probability of an Observation

\[
p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,.}} + \frac{\theta}{\theta + c_{u,.}} p(w = x|\tilde{s}, \theta, \pi(u)) \tag{1}
\]

- Word type \(x\)
- Seating assignments \(\tilde{s}\)
- Concentration \(\theta\)
- Context \(u\)
- Number seated at table serving \(x\) in restaurant \(u, c_{u,x}\)
- Number seated at all tables in restaurant \(u, c_{u,.}\)
- The backoff context \(\pi(u)\)
Computing the Probability of an Observation

\[p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,u}} + \frac{\theta}{\theta + c_{u,u}} p(w = x|\tilde{s}, \theta, \pi(u)) \] \hspace{1cm} (1)

- Word type x
- Seating assignments \tilde{s}
- Concentration θ
- Context u
- Number seated at table serving x in restaurant u, $c_{u,x}$
- Number seated at all tables in restaurant u, $c_{u,u}$
- The backoff context $\pi(u)$
Computing the Probability of an Observation

\[
p(w = x|\vec{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_u} + \frac{\theta}{\theta + c_u} p(w = x|\vec{s}, \theta, \pi(u)) \quad (1)
\]

- Word type \(x\)
- Seating assignments \(\vec{s}\)
- Concentration \(\theta\)
- Context \(u\)
- Number seated at table serving \(x\) in restaurant \(u\), \(c_{u,x}\)
- Number seated at all tables in restaurant \(u\), \(c_u\)
- The backoff context \(\pi(u)\)
Computing the Probability of an Observation

\[p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,x}} \cdot \text{existing table} + \frac{\theta}{\theta + c_{u,x}} \cdot p(w = x|\tilde{s}, \theta, \pi(u)) \]

\[(1) \]

- Word type \(x \)
- Seating assignments \(\tilde{s} \)
- Concentration \(\theta \)
- Context \(u \)
- Number seated at table serving \(x \) in restaurant \(u, c_{u,x} \)
- Number seated at all tables in restaurant \(u, c_{u,x} \)
- The backoff context \(\pi(u) \)
Computing the Probability of an Observation

\[p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,x}} + \frac{\theta}{\theta + c_{u,x}} p(w = x|\tilde{s}, \theta, \pi(u)) \] (1)

- Word type \(x \)
- Seating assignments \(\tilde{s} \)
- Concentration \(\theta \)
- Context \(u \)
- Number seated at table serving \(x \) in restaurant \(u, c_{u,x} \)
- Number seated at all tables in restaurant \(u, c_{u,.} \)
- The backoff context \(\pi(u) \)
Example: \(p(w = b|\vec{s}, \theta = 1.0, u = a) \)

\[p(w = b|\ldots) = \frac{c_{a,b}}{\theta + c_{u}} + \frac{\theta}{\theta + c_{u}} p(w = x|\vec{s}, \theta, \pi(u)) \] (2)
Example: \(p(w = b|\vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{cccc}
 a & b & c & </s> \\
 3 & 1 & 1 & 1 \\
\end{array}
\]

\(<s>\) Restaurant

\[
\begin{array}{c}
 a \\
 1 \\
\end{array}
\]

\(b\) Restaurant

\[
\begin{array}{c}
 a \\
 1 \\
\end{array}
\]

\(c\) Restaurant

\[
\begin{array}{c}
 </s> \\
 1 \\
\end{array}
\]

\[
p(w = b|\ldots) = \frac{c_{a,b}}{\theta + c_{u,1}} + \frac{\theta}{\theta + c_{u,1}} p(w = x|\vec{s}, \theta, \pi(u))
\]

(2)
Example: \(p(w = b|\vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{c}
\text{a}^3 \text{ b}^1 \text{ c}^1 \langle/s\rangle^1
\end{array}
\]

<\text{s}> Restaurant

\[
\begin{array}{c}
\text{a}^1
\end{array}
\]

c Restaurant

\[
\begin{array}{c}
\text{a}^1
\end{array}
\]

\[
p(w = b|\ldots) = \frac{1}{\theta + c_u,} + \frac{\theta}{\theta + c_u,} p(w = x|\vec{s}, \theta, \pi(u)) \quad (2)
\]
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

<table>
<thead>
<tr>
<th>Representative Sentence</th>
<th>Unigram Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restaurant a</td>
<td>[a^3 b^1 c^1]</td>
</tr>
<tr>
<td>Restaurant b</td>
<td>[a^1]</td>
</tr>
<tr>
<td>Restaurant c</td>
<td>[a^1]</td>
</tr>
</tbody>
</table>

\[
p(w = b | \ldots) = \frac{1}{1.0 + c_u} + \frac{1.0}{1.0 + c_u} p(w = x | \vec{s}, \theta, \pi(u)) \quad (2)
\]
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{cccc}
\text{a} & 3 & \text{b} & 1 \\
\text{c} & 1 & \text{}</s> & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{c}
\text{a} & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{c}
\text{a} & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{c}
\text{}</s> & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{ccc}
a & 2 & \text{b} & 1 \\
\text{c} & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{c}
a & 1 \\
\end{array}
\]

Unigram Restaurant

\[
\begin{array}{c}
\text{}</s> & 1 \\
\end{array}
\]

\[
p(w = b | \ldots) = \frac{1}{1.0 + 4} + \frac{1.0}{1.0 + 4} p(w = x | \vec{s}, \theta, \pi(u)) \tag{2}
\]
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{ccc}
\text{a}^3 & \text{b}^1 & \text{c}^1 & \langle /s \rangle^1 \\
\end{array}
\]

<\text{s}> Restaurant

\[
\begin{array}{c}
\text{a}^1 \\
\end{array}
\]

a Restaurant

\[
\begin{array}{ccc}
\text{a}^2 & \text{b}^1 & \text{c}^1 \\
\end{array}
\]

b Restaurant

\[
\begin{array}{c}
\text{a}^1 \\
\end{array}
\]

c Restaurant

\[
\begin{array}{c}
\langle /s \rangle^1 \\
\end{array}
\]

\[
p(w = b | \ldots) = \frac{1}{1.0 + 4} + \frac{1.0}{1.0 + 4} p(w = x | \vec{s}, \theta, \pi(u)) \tag{2}
\]
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

<table>
<thead>
<tr>
<th>Unigram Restaurant</th>
<th>Unigram Restaurant</th>
</tr>
</thead>
<tbody>
<tr>
<td>a(^3) b(^1) c(^1) (<!!!/>!)(^1)</td>
<td>a(^2) b(^1) c(^1)</td>
</tr>
</tbody>
</table>

\[
p(w = b | \ldots) = \frac{1}{1.0 + 4} + \frac{1.0}{1.0 + 4} p(w = x | \vec{s}, \theta, \pi(\emptyset)) \quad (2)
\]
Example: \(p(w = b|\vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{ccc}
a & b & c \\
3 & 1 & 1 \\
\end{array}
\]

\(<s> \) Restaurant

\[
\begin{array}{c}
a \\
1 \\
\end{array}
\]

\(a \) Restaurant

\[
\begin{array}{ccc}
a & b & c \\
2 & 1 & 1 \\
\end{array}
\]

\(b \) Restaurant

\[
\begin{array}{c}
a \\
1 \\
\end{array}
\]

\(c \) Restaurant

\[
\begin{array}{c}
<s> \\
1 \\
\end{array}
\]

\[
p(w = b|\ldots) = \frac{1}{1.0 + 4} + \frac{1.0}{1.0 + 4} p(w = x|\vec{s}, \theta, \pi(\emptyset))
\] (2)
Example: $p(w = b|\vec{s}, \theta = 1.0, u = a)$

Unigram Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>³</th>
<th>b</th>
<th>¹</th>
<th>c</th>
<th>¹</th>
<th>$<$s$>$</th>
<th>¹</th>
</tr>
</thead>
</table>

<s> Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>¹</th>
</tr>
</thead>
</table>

a Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>²</th>
<th>b</th>
<th>¹</th>
<th>c</th>
<th>¹</th>
</tr>
</thead>
</table>

b Restaurant

<table>
<thead>
<tr>
<th>a</th>
<th>¹</th>
</tr>
</thead>
</table>

c Restaurant

| $<$s$>$ | ¹ |

\[
p(w = b|\ldots) = \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\theta,b}}{c_{\theta,.} + \theta} + \frac{\theta}{c_{\theta,.} + \theta} \frac{1}{V} \right)\] (2)
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{ccc}
\text{a}^3 & \text{b}^1 & \text{c}^1 \ \langle /s \rangle^1 \\
\end{array}
\]

\(<s> \) Restaurant

\[
\begin{array}{c}
\text{a}^1 \\
\end{array}
\]

\(\text{b} \) Restaurant

\[
\begin{array}{c}
\text{a}^1 \\
\end{array}
\]

\(\text{c} \) Restaurant

\[
\begin{array}{c}
\langle /s \rangle^1 \\
\end{array}
\]

\[
p(w = b | \ldots) = \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\emptyset, b}}{c_{\emptyset, .} + \theta} + \frac{\theta}{c_{\emptyset, .} + \theta} \right) \frac{1}{5} \tag{2}
\]
Example: \(p(w = b | \vec{s}, \theta = 1.0, u = a) \)

\[
p(w = b | \vec{s}, \theta = 1.0, u = a) = 1 \frac{1}{5} + \frac{1}{5} \left(\frac{c_{\emptyset,b}}{c_{\emptyset,.} + 1.0} + \frac{1.0}{c_{\emptyset,.} + 1.0} \frac{1}{5} \right)
\]
Example: \(p(w = b|\vec{s}, \theta = 1.0, u = a) \)

Unigram Restaurant

\[
\begin{array}{c}
\text{a}^3 \\
\text{b}^1 \\
\text{c}^1 \\
\langle/s\rangle^1
\end{array}
\]

\[
p(w = b|\ldots) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{c_{\emptyset, .} + 1.0} + \frac{1.0}{c_{\emptyset, .} + 1.0} \right)
\]
Example: \(p(w = b | \tilde{s}, \theta = 1.0, u = a) \)

\[
\begin{align*}
\text{Unigram Restaurant} & \quad \begin{array}{cccc}
a \quad 3 & b \quad 1 & c \quad 1 & \langle/s\rangle \quad 1 \\
\end{array} \\
\text{<s> Restaurant} & \quad \begin{array}{c}
a \quad 1 \\
\end{array} \\
\text{b Restaurant} & \quad \begin{array}{c}
a \quad 1 \\
\end{array} \\
\text{c Restaurant} & \quad \begin{array}{c}
\langle/s\rangle \quad 1 \\
\end{array}
\end{align*}
\]

\[
p(w = b | \ldots) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{6 + 1.0} + \frac{1.0}{6 + 1.0} \right)
\]
(2)
Example: $p(w = b|s, \theta = 1.0, u = a)$

Unigram Restaurant

$$\begin{align*}
a^3 & \quad b^1 & \quad c^1 & \quad <s>^1
\end{align*}$$

s Restaurant

$$\begin{align*}
a^1
\end{align*}$$

a Restaurant

$$\begin{align*}
a^2 & \quad b^1 & \quad c^1
\end{align*}$$

b Restaurant

$$\begin{align*}
a^1
\end{align*}$$

c Restaurant

$$\begin{align*}
<s>^1
\end{align*}$$

$p(w = b|\ldots) = \frac{1}{5} + \frac{1}{5} \left(\frac{1}{7} + \frac{1}{75} \right) = 0.24$ (2)
Discounting

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called *discounting*
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)
Discounting

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called *discounting*
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x|\vec{s}, \theta, u) = \frac{c_{u,x}}{\theta + c_{u,x}} \cdot \left[\frac{\theta}{\theta + c_{u,x}} p(w = x|\vec{s}, \theta, \pi(u)) \right]$$

(3)
Discounting

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called *discounting*
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x} - \delta}{\theta + c_{u,x}}_{\text{existing table}} + \frac{\theta + T\delta}{\theta + c_{u,x}}_{\text{new table}} p(w = x|\tilde{s}, \theta, \pi(u)) \quad (3)$$
Discounting

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called *discounting*
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

\[
p(w = x | \vec{s}, \theta, u) = \frac{c_{u,x} - \delta}{\theta + c_{u,x}} \cdot \text{existing table} + \frac{\theta + T \delta}{\theta + c_{u,x}} \cdot p(w = x | \vec{s}, \theta, \pi(u)) \quad (3)
\]
Discounting

- Empirically, it helps favor the backoff if you have more tables
- Otherwise, it gets too close to maximum likelihood
- Idea is called *discounting*
- Steal a little bit of probability mass δ from every table and give it to the new table (backoff)

$$p(w = x|\tilde{s}, \theta, u) = \frac{c_{u,x} - \delta}{\theta + c_{u,x}} \underbrace{\frac{\theta + T \delta}{\theta + c_{u,x}} p(w = x|\tilde{s}, \theta, \pi(u))}_{\text{new table}}$$

Interpolated Kneser-Ney!
More advanced models

- Interpolated Kneser-Ney assumes one table with a dish (word) per restaurant
- Can get slightly better performance by assuming you can have duplicated tables: Pitman-Yor language model
- Requires Gibbs Sampling of the seating assignments (GS, later, but not for language models)
Exercise

- Start with restaurant we had before
- Assume you see <s> b b a c </s>; add those counts to tables
- Compute probability of b following a ($\theta = 1.0, \delta = 0.5$)
- Compute the probability of a following b
- Compute probability of </s> following <s>