Unsupervised Continuous Clustering

Machine Learning: Jordan Boyd-Graber
University of Colorado Boulder
LECTURE 16
Lecture for Today

- What is clustering?
- K-Means
- Gaussian Mixture Models
Clustering

Classification: what is label of new point?

Clustering: how should we group these points?

Clustering: or is this the right grouping?

Clustering: what about this?
Clustering

Uses:

- genomics
- medical imaging
- social network analysis
- recommender systems
- market segmentation
- voter analysis
Microarray Gene Expression Data

From: “Skin layer-specific transcriptional profiles in normal and recessive yellow (Mc1re/Mc1re) mice” by April and Barsh in Pigment Cell Research (2006)
Medical Imaging (MRIs and PET scans)

From: “Fluorodeoxyglucose positron emission tomography of mild cognitive impairment with clinical follow-up at 3 years” by Pardo et al. in *Alzheimer’s and Dementia* (2010)
Social Networks

Twitter Social Network, 20K nodes 250K edges

Aeromental
chrisbrogan

JasonCalacanis
bloggersblog

Forecast

stevenrubel

ap1978
Webtickle
chrispilkey
jeftpulver
macworld

grum
prietoj
SteveJobs

Michoaca2

TUAW

ambermacarthur
Recommender Systems

From: tech.hulu.com/blog/
Market Segmentation

From: mappinganalytics.com/map/segmentation-maps/segmentation-map.html
Voter Analysis

- soccer moms (female, middle aged, married, middle income, white, kids, suburban)
- Nascar dads (male, middle aged, married, middle income, white, kids, Southern, suburban or rural)
- security moms (…)
- low information voters
- Ivy League Elites
Clustering

Questions:
- how do we fit clusters?
- how many clusters should we use?
- how should we evaluate model fit?
K-Means

How do we fit the clusters?

- simplest method: K-means
- requires: real-valued data
- idea:
 - pick K initial cluster means
 - associate all points closest to mean k with cluster k
 - use points in cluster k to update mean for that cluster
 - re-associate points closest to new mean for k with cluster k
 - use new points in cluster k to update mean for that cluster
 - ...
 - stop when no change between updates
K-Means

Animation at:
http://shabal.in/visuals/kmeans/1.html
K-Means: Example

Data:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.2</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.7</td>
</tr>
<tr>
<td>1.2</td>
<td>3.3</td>
</tr>
<tr>
<td>3.1</td>
<td>1.6</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
</tr>
</tbody>
</table>
K-Means: Example

Pick K centers (randomly):

$(-1, -1)$ and $(0, 0)$
K-Means: Example

Calculate distance between points and those centers:

\[
\begin{array}{|c|c|c|c|}
\hline
x_1 & x_2 & (-1, -1) & (0, 0) \\
\hline
0.4 & -1.0 & 1.4 & 1.1 \\
-1.0 & -2.2 & 1.2 & 2.4 \\
-2.4 & -2.2 & 1.9 & 3.3 \\
-1.0 & -1.9 & 0.9 & 2.2 \\
-0.5 & 0.6 & 1.6 & 0.8 \\
-0.1 & 1.7 & 2.9 & 1.7 \\
1.2 & 3.3 & 4.8 & 3.5 \\
3.1 & 1.6 & 4.8 & 3.4 \\
1.3 & 1.6 & 3.5 & 2.1 \\
2.0 & 0.8 & 3.5 & 2.2 \\
\hline
\end{array}
\]

> centers <- rbind(c(-1,-1), c(0,0))
> dist1 <- apply(x, 1, function(x) sqrt(sum((x-centers[1,])^2)))
> dist2 <- apply(x, 1, function(x) sqrt(sum((x-centers[2,])^2)))
K-Means: Example

Choose mean with smaller distance:

\[
\begin{array}{|c|c|c|c|}
\hline
x_1 & x_2 & (-1, -1) & (0, 0) \\
\hline
0.4 & -1.0 & 1.4 & 1.1 \\
-1.0 & -2.2 & 1.2 & 2.4 \\
-2.4 & -2.2 & 1.9 & 3.3 \\
-1.0 & -1.9 & 0.9 & 2.2 \\
-0.5 & 0.6 & 1.6 & 0.8 \\
-0.1 & 1.7 & 2.9 & 1.7 \\
1.2 & 3.3 & 4.8 & 3.5 \\
3.1 & 1.6 & 4.8 & 3.4 \\
1.3 & 1.6 & 3.5 & 2.1 \\
2.0 & 0.8 & 3.5 & 2.2 \\
\hline
\end{array}
\]

\[
> \text{dists} <- \text{cbind(dist1,dist2)} \\
> \text{cluster.ind} <- \text{apply(dists,1,which.min)}
\]
K-Means: Example

New clusters:
Refit means for each cluster:

- cluster 1: \((-1.0, -2.2), (-2.4, -2.2), (-1.0, -1.9)\)
- new mean: \((-1.5, -2.1)\)
- cluster 2: \((0.4, -1.0), (-0.5, 0.6), (-0.1, 1.7), (1.2, 3.3), (3.1, 1.6), (1.3, 1.6), (2.0, 0.8)\)
- new mean: \((1.0, 1.2)\)
K-Means: Example

Recalculate distances for each cluster:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$(-1.5, -2.1)$</th>
<th>$(1.0, 1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-1.0</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.2</td>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
<td>1.0</td>
<td>4.9</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.7</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>6.0</td>
<td>2.1</td>
</tr>
<tr>
<td>3.1</td>
<td>1.6</td>
<td>5.8</td>
<td>2.0</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>4.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>
K-Means: Example

Choose mean with smaller distance:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$(-1.5, -2.1)$</th>
<th>$(1.0, 1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-1.0</td>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.2</td>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
<td>1.0</td>
<td>4.9</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6</td>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.7</td>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>6.0</td>
<td>2.1</td>
</tr>
<tr>
<td>3.1</td>
<td>1.6</td>
<td>5.8</td>
<td>2.0</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>4.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>
K-Means: Example

New clusters:
Refit means for each cluster:

- cluster 1: \((0.4, -1.0), (-1.0, -2.2), (-2.4, -2.2), (-1.0, -1.9)\)
- new mean: \((-1.0, -1.8)\)
- cluster 2: \((-0.5, 0.6), (-0.1, 1.7), (1.2, 3.3), (3.1, 1.6), (1.3, 1.6), (2.0, 0.8)\)
- new mean: \((1.2, 1.6)\)
K-Means: Example

Recalculate distances for each cluster:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$(-1.0, -1.8)$</th>
<th>$(1.2, 1.6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-1.0</td>
<td>1.6</td>
<td>2.7</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.2</td>
<td>0.4</td>
<td>4.4</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
<td>1.5</td>
<td>5.2</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
<td>0.1</td>
<td>4.1</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.7</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>5.6</td>
<td>1.7</td>
</tr>
<tr>
<td>3.1</td>
<td>1.6</td>
<td>5.3</td>
<td>1.9</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
<td>4.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>4.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>
K-Means: Example

Select smallest distance and compare these clusters with previous:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$(-1.0, -1.8)$</th>
<th>$(1.2, 1.6)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>-1.0</td>
<td>1.6</td>
<td>2.7</td>
</tr>
<tr>
<td>-1.0</td>
<td>-2.2</td>
<td>0.4</td>
<td>4.4</td>
</tr>
<tr>
<td>-2.4</td>
<td>-2.2</td>
<td>1.5</td>
<td>5.2</td>
</tr>
<tr>
<td>-1.0</td>
<td>-1.9</td>
<td>0.1</td>
<td>4.1</td>
</tr>
<tr>
<td>-0.5</td>
<td>0.6</td>
<td>2.4</td>
<td>2.0</td>
</tr>
<tr>
<td>-0.1</td>
<td>1.7</td>
<td>3.6</td>
<td>1.2</td>
</tr>
<tr>
<td>1.2</td>
<td>3.3</td>
<td>5.6</td>
<td>1.7</td>
</tr>
<tr>
<td>3.1</td>
<td>1.6</td>
<td>5.3</td>
<td>1.9</td>
</tr>
<tr>
<td>1.3</td>
<td>1.6</td>
<td>4.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2.0</td>
<td>0.8</td>
<td>4.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

Table : New Clusters

<table>
<thead>
<tr>
<th>$(-1.5, -2.1)$</th>
<th>$(1.0, 1.2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>2.3</td>
</tr>
<tr>
<td>0.5</td>
<td>4.0</td>
</tr>
<tr>
<td>1.0</td>
<td>4.9</td>
</tr>
<tr>
<td>0.5</td>
<td>3.8</td>
</tr>
<tr>
<td>2.8</td>
<td>1.7</td>
</tr>
<tr>
<td>4.1</td>
<td>1.2</td>
</tr>
<tr>
<td>6.0</td>
<td>2.1</td>
</tr>
<tr>
<td>5.8</td>
<td>2.0</td>
</tr>
<tr>
<td>4.6</td>
<td>0.5</td>
</tr>
<tr>
<td>4.6</td>
<td>1.1</td>
</tr>
</tbody>
</table>

Table : Old Clusters
K-Means in Practice

R has a function for K-means in the stats package; this is probably already loaded

- let’s use this for the Old Faithful data

```r
> library(datasets)
> faith.2 <- kmeans(faithful,2)
> names(faith.2)
> plot(faithful[,1],faithful[,2],col=faith.2$cluster,
+     pch=faith.2$cluster,lwd=3)
```
The image shows a scatter plot with two variables: "eruptions" on the x-axis and "wait" on the y-axis. The scatter plot contains two distinct clusters, one in the lower left corner represented by red triangles and another in the upper right corner represented by black circles. The graph appears to be from a presentation on unsupervised continuous clustering.
K-Means in R

K-means can be used for *image segmentation*

- partition image into multiple segments
- find boundaries of objects
- make art
K-Means Clustering

What is our data look like this?
K-Means Clustering

True clustering:
K-Means Clustering

K-means clustering \((K = 2)\):
Mixture Models

K-means associates data with cluster centers.

What if we actually modeled the data?

- real-valued data
- observation x_i in cluster c_i
- have K clusters
- model each cluster with a Gaussian distribution

$$x_i \mid c_i = k \sim N(\mu_k, \Sigma_k)$$

- μ_k is mean vector, Σ_k is covariance matrix
Mixture Models

Gaussian mixture model ($K = 2$):
Mixture Models

Why mixture models?

• more flexible: can account for clusters with different shapes
• have data model (will be useful for choosing K)
• less sensitive to data scaling
Multivariate Gaussian

Multivariate Gaussian distribution for $\mathbf{x} \in \mathbb{R}^d$:

$$p(\mathbf{x} | \mu, \Sigma) = (2\pi)^{-\frac{d}{2}} |\Sigma|^{-\frac{1}{2}} e^{-\frac{1}{2}(\mathbf{x}-\mu)^T \Sigma^{-1}(\mathbf{x}-\mu)}$$

- μ is vector of means
- Σ is covariance matrix
Multivariate Gaussian

pdf when $\mu = [0, 0]$ and $\Sigma = \begin{bmatrix} 0.9 & 0.4 \\ 0.4 & 0.3 \end{bmatrix}$.
Multivariate Gaussian
Fitting a Mixture Model

Mixture model:
- observation x_i in cluster c_i with K clusters
- model each cluster with a Gaussian distribution

$$x_i \mid c_i = k \sim \mathcal{N}(\mu_k, \Sigma_k)$$

How do we find c_1, \ldots, c_n (clusters) and $(\mu_1, \Sigma_1), \ldots, (\mu_K, \Sigma_K)$ (cluster centers)?
Fitting a Mixture Model

First, let’s simplify the model:

- covariance matrices have only diagonal elements,

\[\Sigma = \begin{bmatrix}
\sigma_1^2 & 0 & \ldots & 0 \\
0 & \sigma_2^2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \sigma_K^2
\end{bmatrix}\]

- set \(\sigma_1^2 = \cdots = \sigma_K^2\), suppose known
Fitting a Mixture Model

Next, use a method similar to K-means:

- start with random cluster centers
- associate observations to clusters by (log-)likelihood,

\[
\ell(x_i \mid c_i = k) = -\frac{d}{2} \log(2\pi) - \frac{1}{2} \log \left(\prod_{j=1}^{d} \sigma_{k,j}^2 \right) - \frac{1}{2} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2 / \sigma_{k,j}^2
\]

\[
\propto -d \log(\sigma_k) - \frac{1}{2\sigma_k^2} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2
\]

\[
\propto - \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2
\]

- refit centers \(\mu_1, \ldots, \mu_K \) given clusters by

\[
\mu_{k,j} = \frac{1}{n_k} \sum_{c_i = k} x_{i,j}
\]
Fitting a Mixture Model

clustering with K-means

minimize distance

\[d(x_i, \mu_k) = \sqrt{\sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2} \]

update means with K-means

use average

\[\mu_{k,j} = \frac{1}{n_k} \sum_{c_i=k} x_{i,j} \]

clustering with GMM

maximize likelihood

\[\ell(x_i | c_i = k) \propto - \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2 \]

update means with GMM

use average

\[\mu_{k,j} = \frac{1}{n_k} \sum_{c_i=k} x_{i,j} \]
Fitting a Mixture Model

OK, now what if

\[\Sigma = \begin{bmatrix} \sigma_1^2 & 0 & \ldots & 0 \\ 0 & \sigma_2^2 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \sigma_K^2 \end{bmatrix} \]

and \(\sigma_1^2, \ldots, \sigma_K^2 \) can take different values?

- use same algorithm
- update \(\mu_k \) and \(\sigma_k^2 \) with maximum likelihood estimator,

\[
\mu_{k,j} = \frac{1}{n_k} \sum_{c_i = k} x_{i,j} \\
\sigma_{k,j}^2 = \frac{1}{n_k} \sum_{c_i = k} (x_{i,j} - \mu_{k,j})^2
\]
Fitting a Mixture Model

Data:

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.7</td>
<td>-0.4</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
</tr>
<tr>
<td>0.4</td>
<td>-1.7</td>
</tr>
<tr>
<td>-0.4</td>
<td>-1.0</td>
</tr>
<tr>
<td>-1.3</td>
<td>-1.7</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3</td>
</tr>
<tr>
<td>1.2</td>
<td>5.2</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
</tr>
<tr>
<td>1.1</td>
<td>-0.8</td>
</tr>
<tr>
<td>0.5</td>
<td>2.8</td>
</tr>
</tbody>
</table>
Fitting a Mixture Model

- pick centers and variances, $\mu_1 = [-1, -1]$, $\sigma_1^2 = [1, 1]$, $\mu_1 = [1, 1]$, $\sigma_2^2 = [1, 1]$
- compute (proportional) log likelihoods,

$$\ell(x_i | c_i = k) = -\sum_{j=1}^{d} \log(\sigma_j) - \frac{1}{2} \sum_{j=1}^{d} (x_{i,j} - \mu_{k,j})^2 / \sigma_{k,j}$$

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.7</td>
<td>-0.4</td>
<td>-3.8</td>
<td>-12.1</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>-1.6</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.4</td>
<td>-1.7</td>
<td>-1.2</td>
<td>-3.8</td>
</tr>
<tr>
<td>-0.4</td>
<td>-1.0</td>
<td>-0.2</td>
<td>-3.0</td>
</tr>
<tr>
<td>-1.3</td>
<td>-1.7</td>
<td>-0.3</td>
<td>-6.3</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3</td>
<td>-11.2</td>
<td>-2.6</td>
</tr>
<tr>
<td>1.2</td>
<td>5.2</td>
<td>-22.0</td>
<td>-9.0</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>-3.6</td>
<td>-0.3</td>
</tr>
<tr>
<td>1.1</td>
<td>-0.8</td>
<td>-2.2</td>
<td>-1.6</td>
</tr>
<tr>
<td>0.5</td>
<td>2.8</td>
<td>-8.2</td>
<td>-1.7</td>
</tr>
</tbody>
</table>
Fitting a Mixture Model

• fit new means and variances:

$$\mu_1 = [-1.3, -1.2]$$
$$\sigma^2_1 = [3.1, 0.4]$$
$$\mu_2 = [0.9, 1.8]$$
$$\sigma^2_2 = [0.2, 5.4]$$

• compute new distances...
Fitting a Mixture Model

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>$k = 1$</th>
<th>$k = 2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.7</td>
<td>-0.4</td>
<td>-1.8</td>
<td>-70.8</td>
</tr>
<tr>
<td>0.4</td>
<td>0.1</td>
<td>-2.7</td>
<td>-1.0</td>
</tr>
<tr>
<td>0.4</td>
<td>-1.7</td>
<td>-0.8</td>
<td>-2.0</td>
</tr>
<tr>
<td>-0.4</td>
<td>-1.0</td>
<td>-0.3</td>
<td>-6.8</td>
</tr>
<tr>
<td>-1.3</td>
<td>-1.7</td>
<td>-0.5</td>
<td>-16.6</td>
</tr>
<tr>
<td>1.0</td>
<td>3.3</td>
<td>-27.4</td>
<td>-0.1</td>
</tr>
<tr>
<td>1.2</td>
<td>5.2</td>
<td>-55.9</td>
<td>-1.3</td>
</tr>
<tr>
<td>1.3</td>
<td>0.3</td>
<td>-4.3</td>
<td>-0.7</td>
</tr>
<tr>
<td>1.1</td>
<td>-0.8</td>
<td>-1.2</td>
<td>-0.6</td>
</tr>
<tr>
<td>0.5</td>
<td>2.8</td>
<td>-21.3</td>
<td>-0.7</td>
</tr>
</tbody>
</table>

No change, so clusters are final
Fitting a Mixture Model
Limitations of k-means / mixture models

k-means is fast and simple, but . . .

- What if your data are discrete?
- What if each data point has more than one cluster? (digits vs. documents)
- What if you don’t know the number of clusters?