A Brief History Of Machine Learning

1962

Frank Rosenblatt, *Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms*

Perceptron can learn anything you can program it to do.
A Brief History Of Machine Learning

1969

Minsky & Papert, *Perceptrons: An introduction to computational geometry*

There are many things a perceptron can’t in principle learn to do
A Brief History Of Machine Learning

1970-1985

Attempts to develop symbolic rule discovery algorithms

1986

Rumelhart, Hinton, & Williams, *Back propagation*

Overcame many of the Minsky & Papert objections

Neural nets popular in cog sci and AI
A Brief History Of Machine Learning

1990-2005

Bayesian approaches
 • take the best ideas from neural networks – statistical computing, statistical learning

Support-Vector Machines
 • convergence proofs (unlike neural nets)

A few old timers keep playing with neural nets
 • Hinton, LeCun, Bengio

Neural nets banished from NIPS!
A Brief History Of Neural Networks

2005-2010

Attempts to resurrect neural nets with

• unsupervised pretraining
• probabilistic neural nets
• alternative learning rules
Most of the alternative techniques discarded in favor of 1980’s style neural nets with ...

- lots more training data
- lots more computing cycles
- a few important tricks that improve training and generalization (mostly from Hinton)
- rebranding: Deep Learning
Brainlike Computers, Learning From Experience

PALO ALTO, Calif. — Computers have entered the age when they are able to perform some functions that humans do with ease: see, speak, listen, navigate, move around. And they can do so with an efficiency and economy of power that far outstrips anything that humans are able to achieve.

“This is really quite impressive,” said Larry Sanger, an astrophysicist who directs the California Institute for Telecommunications and Information Technology, one of many research centers devoted to developing these new kinds of computer circuits.

Conventional computers are limited by what they have been programmed to do. Computer vision systems, for example, can “recognize” objects that can be identified by the statistics-oriented algorithms programmed into them. An algorithm is like a recipe, a set of step-by-step instructions to perform a calculation.

But last year, Google researchers were able to get a machine-learning algorithm, known as a neural network, to perform an identification task without supervision. The network scanned a database of 10 million images, and in doing so trained itself to recognize cats.

In June, the company said it had used those neural network techniques to develop a new search service to help customers find specific photos more accurately.

The new approach, used in both hardware and software, is being driven by the explosion of scientific knowledge about the brain. Kwabena Boahen, a computer scientist who leads Stanford’s Brain in Silicon research program, said that is also its limitation, as scientists are far from fully understanding how brains function.

“We have no clue,” he said. “I’m an engineer, and I build things. There are these highfalutin theories, but give me one that will let me build something.”

Until now, the design of computers was dictated by ideas originated by the mathematician John von Neumann about 65 years ago. Microprocessors perform operations at lightning speed, following instructions programmed using long strings of 1’s and 0’s. They generally store that information separately in what is known, colliquially, as memory, either in the processor itself, in adjacent storage chips or in higher capacity magnetic disk drives.

The data — for instance, temperatures for a climate model or letters for word processing — are shuttled in and out of the processor’s short-term memory while the computer carries out the programmed action. The result is then moved to its main memory.

The new processors consist of electronic components that can be connected by wires that mimic biological synapses. Because they are based on large groups of neuron-like elements, they are known as neuromorphic processors, a term credited to the California Institute of Technology physicist Cyver Mead, who pioneered the concept in the late 1980s.

They are not “programmed.” Rather the connections between the circuits are “weighted” according to correlations in data that the processor has already “learned.” Those weights are then altered as data flows in to the chip, causing them to change their values and to “spike.” That generates a signal that travels to other components and, in reaction, changes the neural network, in essence programming the next actions much the same way that information alters human thoughts and actions.

“Instead of feeding data to computation as we do today, we can now bring computation to data,” said Dharmendra Modha, an I.B.M. computer scientist who leads the company’s cognitive computing research effort. “Sensors become the computer, and it opens up a new way to use compute up.

But the new computers, which are still based on silicon chips, will not replace today’s computers, but will augment them, at least for now. Many computer designers see them as coprocessors, meaning they can work in tandem with other circuits that can be embedded in smartphones and in the giant centralized computers that make up the cloud. Modern computers already consist of a variety of coprocessors that perform specialized tasks, like producing graphics on your cellphone and converting audio, video and other data into your laptop.

One great advantage of the new approach is its ability to tolerate glitches. Traditional computers are precise, but they cannot work around the failure of even a single transistor. With the biological designs, the algorithms are ever changing, allowing the system to continuously adapt and work around failures to complete tasks.

Traditional computers are also remarkably energy inefficient, especially when compared to actual brains, which the new neurons are built to mimic.

I.B.M. announced last year that it had built a supercomputer simulation of the brain that encompassed roughly 10 billion neurons — more than 10 percent of a human brain. It ran about 1,500 times more slowly than an actual brain. Further, it required several megawatts of power, compared with just 20 watts of power used by the biological brain.

Running the program, known as Compass, which attempts to simulate a brain, at the speed of a human brain would require a flow of electricity in a conventional computer that is equivalent to what is needed to power both San Francisco and New York, Dr. Modha said.

I.B.M. and Qualcomm, as well as the Stanford research team, have already designed neuromorphic processors, and Qualcomm has said that it is coming out in 2014 with a commercial version, which is expected to be used largely for further development. Moreover, many universities are now focused on this new style of computing. This fall the National Science Foundation financed the Center for Brains, Minds and Machines, a new research center based at the Massachusetts Institute of Technology, with Harvard and Cornell.

The largest class on campus this fall at Stanford was a graduate level machine-learning course covering both statistical and biological approaches, taught by the computer scientist Andrew Ng. More than 760 students enrolled. “That reflects the zeitgeist,” said Terry Sejnowski, a computational neuroscientist at the Salk Institute, who pioneered early biologically inspired algorithms. “Everyone knows there is something big happening, and they’re trying find out what it is.”

A version of this article appears in print on December 29, 2013, on page A1 of the New York edition with the headline: Brainlike Computers, Learning From Experience.
Scientists See Promise in Deep-Learning Programs

By JOHN MARKOFF NOV. 23, 2012

Using an artificial intelligence technique inspired by theories about how the brain recognizes patterns, technology companies are reporting startling gains in fields as diverse as computer vision, speech recognition and the identification of promising new molecules for designing drugs.

The advances have led to widespread enthusiasm among researchers who design software to perform human activities like seeing, listening and thinking. They offer the promise of machines that converse with humans and perform tasks like driving cars and working in factories, raising the specter of automated robots that could replace human workers.

The technology, called deep learning, has already been put to use in services like Apple’s Siri virtual personal assistant, which is based on Nuance Communications’ speech recognition service, and in Google’s Street View, which uses machine vision to identify specific addresses.

But what is new in recent months is the growing speed and accuracy of deep-learning programs, often called artificial neural networks or just “neural nets” for their resemblance to the neural connections in the brain.

“There has been a number of stunning new results with deep-learning methods,” said Yann LeCun, a computer scientist at New York University who did pioneering research in handwriting recognition at Bell Laboratories. “The kind of jump we are seeing in the accuracy of these systems is very rare indeed.”

Artificial intelligence researchers are acutely aware of the dangers of being overly optimistic. Their field has long been plagued by outbursts of misplaced enthusiasm followed by equally striking declines.

In the 1960s, some computer scientists...
The Believers

The hidden story behind the code that runs our lives

MAGIC has entered our world. In the pockets of many Americans today are thin black slabs that, somehow, understand and anticipate our desires. Linked to the digital cloud and satellites beyond, churning through personal data, these machines listen and assist, decoding our language, viewing and labeling reality with their cameras. This summer, as I walked to an appointment at the University of Toronto, stepping out of my downtown hotel into brisk hints of fall, my phone already had directions at hand. I asked where to find coffee on the way. It told me. What did the machine know? How did it learn? A gap broader than any we’ve known has opened between our use of technology and our understanding of it. How did the machine work? As I would discover, no one could say for certain. But as I walked with my coffee, I was on the way to meet the man most qualified to bridge the gap between what the machine knows and what you know.

Geoffrey Hinton is a torchbearer, an academic computer scientist who has spent his career, along with a small band of fellow travelers, devoted to an idea of artificial intelligence that has been discarded multiple times over. A brilliant but peripheral figure. A believer. A brusque coder who had to hide his ideas in obscure language to get them past peer review. A devotee of the notion that, despite how little we understand the brain, even a toy model of it could present more computational power and flexibility than the rigid logic or programmed knowledge of traditional artificial intelligence. A man whose ideas and algorithms might now help power nearly every aspect of our lives. A guru of the artificial neural network.

Such networks, which have been rebranded “deep learning,” have had an unparalleled ascent over the past few years. They’ve hit the front page of The New York Times. Adept at

By Paul Vooren | FEBRUARY 23, 2015
Modeling Individual Neurons

flow of information
Modeling Individual Neurons

Activation function

\[\text{net} = \sum_{i} w_i x_i + b \]

\[y = f(\text{net}) \]

rectified linear

binary threshold

sigmoid

input activities
weights and bias

output activity
Computation With A Binary Threshold Unit

“And” gate

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

$y = 1$ if net > 0

[Diagram showing the binary threshold unit with inputs x_1 and x_2, and output y.]
Computation With A Binary Threshold Unit

“Exclusive or” gate

<table>
<thead>
<tr>
<th>x1</th>
<th>x2</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

\[z_2 = x_1 \text{ and } x_2 \]

\[z_1 = x_1 \text{ or } x_2 \]

\[y = z_1 \text{ and not } z_2 \]
Feedforward Architectures

Activation flows in one direction; no closed loops

Performs association from input pattern to output pattern

- big, hairy, stinky => run away
- small, round, orange => eat
- big, round, soft => eat
- small, orange, hairy => run away
- stinky, yellow => eat

Learning: adjust connections to achieve input-output mapping
Recurrent Architectures

Achieves *best interpretation* of partial or noisy patterns, e.g., MAR → M → LLOW

State space dynamics

Attractor dynamics

Learning: establishes new attractors and shifts attractor basin boundaries
Let’s Get Serious...

Training data

\[\{(x^1, d^1), (x^2, d^2), \ldots, (x^p, d^p)\} \]

big, hairy, stinky => run away

Network model

\[y^\alpha = f_w(x^\alpha) \]

Objective function

\[E = \sum_\alpha \sum_k (d_k^\alpha - y_k^\alpha)^2 \]

Learning rule

\[\Delta w_{ji} = -\varepsilon \frac{\partial E}{\partial w_{ji}} \]
Linear Activation Function

\[y_j^\alpha = \sum_i w_{ji} x_i^\alpha \]

=> Linear Regression Via Stochastic Gradient Descent

\[\Delta w_{ji} = -\varepsilon \frac{\partial E}{\partial w_{ji}} \]

\[= \varepsilon \frac{\partial}{\partial w_{ji}} \sum_k (d_k^\alpha - y_k^\alpha) x_i \]

For each pattern, \(\alpha \),

\[\Delta w_{ji} = \varepsilon (d_j^\alpha - y_j^\alpha) x_i \]

Only local info is required!
Shape of error surface

Suppose we have 1 input, 1 output unit (no bias)

\[E = \sum_{i=1}^{n} \frac{1}{2} (d_i - y_i)^2 \]

\[= \sum_i (d_i^* - wx^i)^2 \]

\[= \sum_i (d_i^* - 2d_i^* w + x_i^* w_i) \]

\[= [\sum_i x_i^*] w^2 - [\sum_i 2d_i^* w_i] + [\sum_i d_i^*] \]

\[\therefore \text{Error surface is quadratic in } w \text{ (i.e., highest exponent of } w \text{ is 2)} \]

This is true no matter how many weights are in network

Only one minimum in quadratic surfaces ("hyperparabolic")

\[\text{Slope of error surface} = \frac{dE}{dw} \]

Weight update procedure:

1. Start off at some random point in weight space.
2. Modify weights so as to move downhill in error.
Suppose we have 2 inputs, one output, and two associations to learn, $x' - d'$, $x^a - d^a$. Weights suitable for first association satisfy the constraint:

$$x'_1 w_1 + x'_2 w_2 = d'$$

And for the second association,

$$x^a_1 w_1 + x^a_2 w_2 = d^a$$
Two ways of updating weights:

1. **Batch**
 - Sweep through all patterns and then modify weights
 - \[\Delta w_{ji} = \frac{1}{N} \sum_{k=1}^{N} (d_j^k - y_j^k) x_i^k \]

2. **Online**
 - Modify weights after each pattern, \(x \), has been presented
 - \[\Delta w_{ji} = \epsilon (d_j^i - y_j^i) x_i^i \]

(1) "BATCH"

(2) "ON-LINE"

true gradient descent
- \[\Delta w \sim \partial E/\partial w \]

noisy or "stochastic" descent

On-line can be faster if associations are similar!
Extending LMS To Handle Nonlinear Activation Functions And Multilayered Networks

First, let's rederive LMS rule

\[\Delta w_{ji} \sim -\frac{\partial E}{\partial w_{ji}} \]

\[\frac{\partial E}{\partial w_{ji}} = \frac{\partial E}{\partial o_j} \cdot \frac{\partial o_j}{\partial w_{ji}} \]

\[\sim -(d_j - o_j) o_i \]

\[E = \sum_k (d_k - o_k)^2 \]

\[\frac{\partial E}{\partial o_j} = -2(d_j - o_j) \]

\[o_j = \sum_k w_{jk} o_k \]

\[\frac{\partial o_j}{\partial w_{ji}} = o_i \]
Logistic Activation Function

\[net_j = \sum_k w_{jk} o_k \quad o_j = \frac{1}{1 + e^{-net_j}} \]
Back Propagation (Rumelhart, Hinton, & Williams; LeCun; Parker; Werbos)

\[e = (d_3 - o_3)^2 \]

\[\frac{\partial e}{\partial o_3} = -2(d_3 - o_3) \]

\[o_3 = \frac{1}{1 + e^{-\text{net}_3}} \]

\[\frac{\partial o_3}{\partial \text{net}_3} = o_3(1 - o_3) \]

\[\text{net}_2 = \sum_i w_{3i} o_i \]

\[\frac{\partial \text{net}_3}{\partial w_{32}} = o_2 \]

\[\frac{\partial \text{net}_3}{\partial o_2} = \text{net}_2 \]

\[o_2 = \frac{1}{1 + e^{-\text{net}_2}} \]

\[\frac{\partial o_2}{\partial \text{net}_2} = o_2(1 - o_2) \]

\[\text{net}_1 = \sum_i w_{2i} o_i \]

\[\frac{\partial \text{net}_2}{\partial w_{21}} = o_1 \]

\[\frac{\partial e}{\partial w_{32}} = \frac{\partial e}{\partial o_3} \frac{\partial o_3}{\partial \text{net}_3} \frac{\partial \text{net}_3}{\partial w_{32}} \approx -2(d_3 - o_3) o_3(1 - o_3) w_{32} o_2(1 - o_3) \]

\[\frac{\partial e}{\partial w_{21}} = \frac{\partial e}{\partial o_2} \frac{\partial o_2}{\partial \text{net}_2} \frac{\partial \text{net}_2}{\partial w_{21}} \approx -2(d_3 - o_3) o_3(1 - o_3) w_{32} o_2(1 - o_3) \]
What it boils down to

\[\Delta w_{ji} = \varepsilon \delta_j o_i \]

For output unit,

\[\delta_j = (d_j - o_j) \cdot o_j(1-o_j) \]

For hidden unit,

\[\delta_j = \left[\sum_k \delta_k w_{kj} \right] \cdot o_j(1-o_j) \]

- \(\Delta w_{ji} \) for output unit is the same as LMS with a nonlinear output (LMS = "delta rule"; back prop = "generalized delta rule")

- Two phase process: Forward (activation propagation) phase
 Backward (error propagation) phase

- As with LMS rule, back prop performs gradient descent in error space, i.e., finding best set of weights that minimize error. Weights = all weights (biases) in network

- Back propagation works for arbitrarily deep feedforward networks
- Error surface is no longer hyperparabolic (i.e., no longer one global minimum)

- \(w_2 \)

- \(w_1 \)

- \(\bullet = \text{local minimum} \)
Why Are Nonlinearities Necessary?

Prove

- A network with a linear hidden layer has no more functionality than a network with no hidden layer (i.e., direct connections from input to output)

- For example, a network with a linear hidden layer cannot learn XOR

Can we get a network to learn the information in these two family trees?

Christopher = Penelope
 Margaret = Arthur

Andrew = Christine
 Jennifer = Charlie
 Victoria = James
 Colin
 Charlotte

Roberto = Maria
 Gino = Emilio

Pierro = Francesca
 Lucia = Marco
 Alphonso
 Sophia

Knowledge can be represented as triples:

(has-mother Alphonso Lucia)
(has-wife James Victoria)
(has-son Penelope Arthur)

12 relationships: brother, sister, nephew, niece, uncle, aunt, husband, wife, son, daughter, father, mother

Can system learn to produce the third term of a triple when given the first two?

E.g., (has-aunt Alphonso ?) Angelo!
A two-layer net won't do:

E.g.,

(has-uncle Alfonso Emilio)
(has-husband Gina Emilio)

Problem:

(has-uncle Gina ?)
(has-husband Alfonso ?)

Hinton's architecture

System must learn an "internal representation" of relationship.
Figure 6: The weights from the 24 input units that represent people to the 6 units in the second layer that learn distributed representations of people. White rectangles stand for excitatory weights, black for inhibitory weights, and the area of the rectangle encodes the magnitude of the weight. The weights from the 12 English people are in the top row of each unit. Beneath each of these weights is the weight from the isomorphic Italian.

Figure 7: The weights from the 12 input units that represent relationships to the 6 units in the second layer that learn distributed representations of the relationships.
Changing Loss Function

squared error

\[E = \frac{1}{2} \sum_{j} (d_j - y_j)^2 \]

\[\frac{\partial E}{\partial y_j} = d_j - y_j \]

cross entropy (= max likelihood)

\[E = -\sum_{j} d_j \log y_j + (1 - d_j) \log(1 - y_j) \]

\[\frac{\partial E}{\partial y_j} = \frac{d_j - y_j}{y_j(1 - y_j)} \]
Changing Loss Function

Back propagation

- logistic activation function

\[z_j = \sum_i w_{ji}x_i \quad y_j = \frac{1}{1 + \exp(-z_j)} \]

- weight update

\[\Delta w_{ji} = \varepsilon \delta_j x_i \quad \delta_j = \begin{cases} \frac{\partial E}{\partial y_j} y_j(1 - y_j) & \text{for output unit} \\ \left(\sum_k w_{kj} \delta_k \right) y_j(1 - y_j) & \text{for hidden unit} \end{cases} \]
Changing Activation Function 1

Back propagation

- softmax activation function for 1-of-N classification

\[z_j = \sum_i w_{ji}x_i \quad \quad y_j = \frac{\exp(z_j)}{\sum_k \exp(z_k)} \]

- weight update

\[\Delta w_{ji} = \varepsilon \delta_j x_i \quad \quad \delta_j = \begin{cases} \frac{\partial E}{\partial y_j} y_j(1 - y_j) & \text{for output unit} \\ \left(\sum_k w_{kj} \delta_k \right) y_j(1 - y_j) & \text{for hidden unit} \end{cases} \]

- gradient is the same when expressed in terms of \(y_j \)
Changing Activation Function 2

Back propagation

- tanh activation function

\[z_j = \sum_i w_{ji} x_i \quad y_j = \tanh(z_j) = 2 \logistic(z_j) \]

- weight update

\[\Delta w_{ji} = \varepsilon \delta_j x_i \]

\[\delta_j = \begin{cases} \frac{\partial E}{\partial y_j} (1 + y_j)(1 - y_j) & \text{for output unit} \\ \left(\sum_k w_{kj} \delta_k \right)(1 + y_j)(1 - y_j) & \text{for hidden unit} \end{cases} \]

- incompatible with cross entropy loss