Hypothesis Testing

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
OCTOBER 11, 2016
\(\chi^2 \) Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\chi^2 \) Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

Expected

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
χ^2 Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td></td>
</tr>
<tr>
<td>Rep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td>84.36</td>
</tr>
<tr>
<td>Rep</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
\(\chi^2 \) Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

Observed

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

Expected

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td>84.36</td>
</tr>
<tr>
<td>Rep</td>
<td>86.86</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
χ^2 Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td>84.36</td>
</tr>
<tr>
<td>Rep</td>
<td>86.86</td>
<td>64.50</td>
<td></td>
</tr>
</tbody>
</table>
χ^2 Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

Observed

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

Expected

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td>84.36</td>
</tr>
<tr>
<td>Rep</td>
<td>86.86</td>
<td>64.50</td>
<td>63.64</td>
</tr>
</tbody>
</table>
\(\chi^2 \) Example

Random sample of 500 U.S. adults: political affiliation and opinion on a tax reform. Dependent at a 5% level of significance?

Observed

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>138</td>
<td>83</td>
<td>64</td>
</tr>
<tr>
<td>Rep</td>
<td>64</td>
<td>67</td>
<td>84</td>
</tr>
</tbody>
</table>

Expected

<table>
<thead>
<tr>
<th></th>
<th>Favor</th>
<th>Indifferent</th>
<th>Oppose</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dem</td>
<td>115.14</td>
<td>85.50</td>
<td>84.36</td>
</tr>
<tr>
<td>Rep</td>
<td>86.86</td>
<td>64.50</td>
<td>63.64</td>
</tr>
</tbody>
</table>

\[
4.539 + 0.073 + 4.914 + 6.016 + 0.097 + 6.514 = 22.152 \quad (1)
\]
Running test: df, \(p \)-Value

- Degrees of Freedom?
Running test: df, p-Value

- Degrees of Freedom? $(r - 1)(c - 1) = 1 \cdot 2 = 2$
- p-value

```python
from scipy.stats.distributions import chi2

1 - chi2.cdf(22.15, 2)
```

```
from scipy.stats import chisquare

chisquare([138, 83, 64, 64, 67, 84], [115.14, 85.5, 84.36, 86.86, 64.5, 63.64], 3)
```

Power_divergenceResult(statistic=22.152468645918482, pvalue=1.5475780213989569e-05)
Running test: df, p-Value

- Degrees of Freedom? $(r-1)(c-1) = 1 \cdot 2 = 2$
- p-value

```python
>>> from scipy.stats.distributions import chi2
>>> 1 - chi2.cdf(22.15, 2)
1.5494894118783797e-05
>>> from scipy.stats import chisquare
>>> chisquare([138, 83, 64, 64, 67, 84],
...     [115.14, 85.5, 84.36, 86.86, 64.5, 63.64],
...     3)
Power_divergenceResult(statistic=22.152468645918482,
                         pvalue=1.5475780213989569e-05)
```
A herd of 1,500 steer was fed a special high-protein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

We Need: What test? What distribution? What’s the null?
Setup

• Test?

z-test

Distribution? Normal with mean 5, s.d. 7.1

Null? $H_0: \mu = 5$

α? Let's say 0.05
Setup

- Test? z-test
- Distribution?
Setup

- Test? z-test
- Distribution? Normal with mean 5, s.d. 7.1
- Null?
Setup

• Test? z-test
• Distribution? Normal with mean 5, s.d. 7.1
• Null? $H_0 : \mu_0 = 5$
• α?
Setup

- Test? z-test
- Distribution? Normal with mean 5, s.d. 7.1
- Null? $H_0: \mu_0 = 5$
- α? Let’s say 0.05
A herd of 1,500 steer was fed a special high protein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

Test Statistic:
A herd of 1,500 steer was fed a special high protein grain for a month. A random sample of 29 were weighed and had gained an average of 6.7 pounds. If the standard deviation of weight gain for the entire herd is 7.1, test the hypothesis that the average weight gain per steer for the month was more than 5 pounds.

Test Statistic:
\[Z = \frac{6.7 - 5}{\frac{7.1}{\sqrt{29}}} = \frac{1.7}{1.318} = 1.289 \]
p-value

```python
>>> from scipy.stats import norm
>>> 1.0 - norm.cdf(1.28)
0.10027256795444206
```
US vs. Japanese Mileage

Read in Data

```python
>>> import pandas as pd
>>> mpg = pd.read_csv("jp-us-mpg.dat", delim_whitespace=True)
>>> mpg.head()
   US  Japan
0   18   24.0
1   15   27.0
2   18   27.0
3   16   25.0
4   17   31.0
```

Is the average car in the US as efficient as the average car in Japan?
Two-Tailed Two-Sample t-test

- Compute means

```python
>>> from numpy import mean
>>> mean(mpg['Japan'].dropna())
30.481012658227847

>>> mean(mpg['US'].dropna())
20.14457831325301
```

```python
>>> us = mpg['US'].dropna()
>>> jp = mpg['Japan'].dropna()

>>> jp_var = var(jp) * len(jp) / float(len(jp) - 1)
>>> us_var = var(us) * len(us) / float(len(us) - 1)
```
Two-Tailed Two-Sample \(t \)-test

- Compute means
  ```python
  >>> from numpy import mean
  >>> mean(mpg['Japan'].dropna())
  30.481012658227847
  >>> mean(mpg['US'].dropna())
  20.14457831325301
  ```

- Compute sample variances
Two-Tailed Two-Sample \(t \)-test

- **Compute means**
  ```python
  >>> from numpy import mean
  >>> mean(mpg['Japan'].dropna())
  30.481012658227847
  >>> mean(mpg['US'].dropna())
  20.14457831325301
  ```

- **Compute sample variances**
  ```python
  >>> from numpy import var
  >>> us = mpg['US'].dropna()
  >>> jp = mpg['Japan'].dropna()
  >>> jp_var = var(jp) * len(jp) / float(len(jp) - 1)
  >>> us_var = var(us) * len(us) / float(len(us) - 1)
  ```
Degrees of Freedom

\[\nu = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2} \right)^2}{\left(\frac{s_1^2}{N_1} \right)^2 + \left(\frac{s_2^2}{N_2} \right)^2} \frac{N_1-1}{N_2-1} \]

(2)
Degrees of Freedom

\[\nu = \frac{\left(\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2} \right)^2}{\frac{(s_1^2/N_1)^2}{N_1-1} + \frac{(s_2^2/N_2)^2}{N_2-1}} \]

\(\nu = 136.8750 \)
t-Statistic

\[T = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{s_1^2/N_1 + s_2^2/N_2}} \]

(3)
\[T = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\frac{s_1^2}{N_1} + \frac{s_2^2}{N_2}}} \] (3)

\[T = 12.94 \]
p-value
\textit{p-value}

\begin{verbatim}
>>> 2*(1.0 - t.cdf(abs(12.946), 136.8750))
0.0
\end{verbatim}