Hypothesis Testing II: z tests

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul

OCTOBER 11, 2016
Suppose we have one observation from normal distribution with mean μ and variance σ^2.

Given an observation x we can compute the Z score as

$$Z = \frac{x - \mu}{\sigma} \quad (1)$$

H_0: Our observation came from the normal distribution with $\mu = \mu_0$

- Assume same known variance σ
z-test

- Suppose we have one observation from normal distribution with mean μ and variance σ^2.
- Given an observation x we can compute the Z score as
 \[
 Z = \frac{x - \mu}{\sigma} \quad (1)
 \]
- H_0: Our observation came from the normal distribution with $\mu = \mu_0$
 - Assume same known variance σ
 - But we need to be more specific!
Two-tailed vs. one-tailed tests

- **Two tail**: Alternative $\mu \neq \mu_0$
- **One tail**: Alternative $\mu > \mu_0$

![Diagram](image)
Multiple observations

If you observe \(x_1 \ldots x_N \) from distribution with mean \(\mu \), test whether \(\mu \neq \mu_0 \)

- Compute test statistic
 \[
 Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{N}} \tag{2}
 \]

- If \(H_0 \) were true, \(\bar{x} \) would be normal distribution with \(\mu_0 \) and variance \(\frac{\sigma^2}{N} \)

- Now we can decide when to reject based on normal CDF
When to reject (two-tailed)