Multinomial distribution

- Recall: the binomial distribution is the number of successes from multiple Bernoulli success/fail events.

- The **multinomial** distribution is the number of different outcomes from multiple *categorical* events:
 - It is a generalization of the binomial distribution to more than two possible outcomes.
 - As with the binomial distribution, each categorical event is assumed to be independent.
 - **Bernoulli** : **binomial** :: **categorical** : **multinomial**

- Examples:
 - The number of times each face of a die turned up after 50 rolls.
 - The number of times each suit is drawn from a deck of cards after 10 draws.
Multinomial distribution

- Notation: let \vec{X} be a vector of length K, where X_k is a random variable that describes the number of times that the kth value was the outcome out of N categorical trials.
 - The possible values of each X_k are integers from 0 to N
 - All X_k values must sum to N: $\sum_{k=1}^{K} X_k = N$

- Example: if we roll a die 10 times, suppose it comes up with the following values:

 $\vec{X} = <1, 0, 3, 2, 1, 3>$

 $X_1 = 1$
 $X_2 = 0$
 $X_3 = 3$
 $X_4 = 2$
 $X_5 = 1$
 $X_6 = 3$

- The multinomial distribution is a joint distribution over multiple random variables: $P(X_1, X_2, \ldots, X_K)$
Suppose we roll a die 3 times. There are 216 \((6^3)\) possible outcomes:

\[
P(111) = P(1)P(1)P(1) = 0.00463
\]
\[
P(112) = P(1)P(1)P(2) = 0.00463
\]
\[
P(113) = P(1)P(1)P(3) = 0.00463
\]
\[
P(114) = P(1)P(1)P(4) = 0.00463
\]
\[
P(115) = P(1)P(1)P(5) = 0.00463
\]
\[
P(116) = P(1)P(1)P(6) = 0.00463
\]
\[
\ldots \quad \ldots \quad \ldots
\]
\[
P(665) = P(6)P(6)P(5) = 0.00463
\]
\[
P(666) = P(6)P(6)P(6) = 0.00463
\]

What is the probability of a particular vector of counts after 3 rolls?
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: \(\vec{X} = <0, 1, 0, 0, 2, 0> \)
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
- Example 1: \(\vec{X} = < 0, 1, 0, 0, 2, 0 > \)
 - \(P(\vec{X}) = P(255) + P(525) + P(552) = 0.01389 \)
Multinomial distribution

What is the probability of a particular vector of counts after 3 rolls?

Example 1: $\vec{X} = <0, 1, 0, 0, 2, 0>$

- $P(\vec{X}) = P(255) + P(525) + P(552) = 0.01389$

Example 2: $\vec{X} = <0, 0, 1, 1, 1, 0>$
Multinomial distribution

- What is the probability of a particular vector of counts after 3 rolls?
 - Example 1: $\vec{X} = <0, 1, 0, 0, 2, 0>$
 - $P(\vec{X}) = P(255) + P(525) + P(552) = 0.01389$
 - Example 2: $\vec{X} = <0, 0, 1, 1, 1, 0>$
 - $P(\vec{X}) = P(345) + P(354) + P(435) + P(453) + P(534) + P(543) = 0.02778$
The probability mass function for the multinomial distribution is:

\[f(\vec{x}) = \frac{N!}{\prod_{k=1}^{K} x_k!} \prod_{k=1}^{K} \theta_k^{x_k} \]

Likewise, categorical distribution, multinomial has a \(K \)-length parameter vector \(\vec{\theta} \) encoding the probability of each outcome.

Like binomial, the multinomial distribution has an additional parameter \(N \), which is the number of events.
Multinomial distribution: summary

- Categorical distribution is multinomial when $N = 1$.
- Sampling from a multinomial: same code repeated N times.
 - Remember that each categorical trial is independent.
 - Question: Does this mean the count values (i.e., each $X_1, X_2, \text{etc.}$) are independent?
Multinomial distribution: summary

- Categorical distribution is multinomial when $N = 1$.
- Sampling from a multinomial: same code repeated N times.
 - Remember that each categorical trial is independent.
 - Question: Does this mean the count values (i.e., each X_1, X_2, etc.) are independent?
 - No! If $N = 3$ and $X_1 = 2$, then X_2 can be no larger than 1 (must sum to N).
Categorical distribution is multinomial when $N = 1$.

Sampling from a multinomial: same code repeated N times.

- Remember that each categorical trial is independent.
- Question: Does this mean the count values (i.e., each X_1, X_2, etc.) are independent?
 - No! If $N = 3$ and $X_1 = 2$, then X_2 can be no larger than 1 (must sum to N).

Remember this analogy:

- **Bernoulli : binomial :: categorical : multinomial**