Probability Distributions: Discrete

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 27, 2016
Binomial distribution

- Bernoulli: distribution over two values (success or failure) from a single event
- Binomial: number of successes from multiple Bernoulli events
- Examples:
 - The number of times “heads” comes up after flipping a coin 10 times
 - The number of defective TVs in a line of 10,000 TVs
- Important: each Bernoulli event is assumed to be independent
- Notation: let X be a random variable that describes the number of successes out of N trials.
 - The possible values of X are integers from 0 to N: \{0, 1, 2, \ldots, N\}
Binomial distribution

• Suppose we flip a coin 3 times. There are 8 possible outcomes:

\[
P(HHH) = P(H)P(H)P(H) = 0.125 \\
P(HHT) = P(H)P(H)P(T) = 0.125 \\
P(HTH) = P(H)P(T)P(H) = 0.125 \\
P(HTT) = P(H)P(T)P(T) = 0.125 \\
P(THH) = P(T)P(H)P(H) = 0.125 \\
P(THT) = P(T)P(H)P(T) = 0.125 \\
P(TTH) = P(T)P(T)P(H) = 0.125 \\
P(TTT) = P(T)P(T)P(T) = 0.125
\]

• What is the probability of landing heads \(x\) times during these 3 flips?
Binomial distribution

- What is the probability of landing heads \(x \) times during these 3 flips?
 - 0 times:
 - \(P(TTT) = 0.125 \)
 - 1 time:
 - \(P(HTT) + P(THT) + P(TTH) = 0.375 \)
 - 2 times:
 - \(P(HHT) + P(HTH) + P(THH) = 0.375 \)
 - 3 times:
 - \(P(HHH) = 0.125 \)
Binomial distribution

• The probability mass function for the binomial distribution is:

\[f(x) = \binom{N}{x} \theta^x (1 - \theta)^{N-x} \]

“N choose x”

• Like the Bernoulli, the binomial parameter \(\theta \) is the probability of success from one event.
• Binomial has second parameter \(N \): number of trials.
• The PMF important: difficult to figure out the entire distribution by hand.
Aside: Binomial coefficients

- The expression \(\binom{n}{k} \) is called a \textit{binomial coefficient}.
 - Also called a \textit{combination} in combinatorics.
- \(\binom{n}{k} \) is the number of ways to choose \(k \) elements from a set of \(n \) elements.
- For example, the number of ways to choose 2 heads from 3 coin flips: HHT, HTH, THH
 \(\binom{3}{2} = 3 \)
- Formula:
 \[
 \binom{n}{k} = \frac{n!}{k!(n-k)!}
 \]

Pascal's triangle depicts the values of \(\binom{n}{k} \).
A Bernoulli distribution is a special case of the binomial distribution when \(N = 1 \).

For this reason, sometimes the term binomial is used to refer to a Bernoulli random variable.
Example

- Probability that a coin lands heads *at least* once during 3 flips?
Example

- Probability that a coin lands heads \textit{at least} once during 3 flips?

\[P(X \geq 1) \]
Example

- Probability that a coin lands heads *at least* once during 3 flips?

\[
P(X \geq 1) = P(X = 1) + P(X = 2) + P(X = 3) = 0.375 + 0.375 + 0.125 = 0.875
\]