Probability Distributions: Discrete

Introduction to Data Science Algorithms
Jordan Boyd-Graber and Michael Paul
SEPTEMBER 27, 2016
Bernoulli distribution

• A distribution over a sample space with two values: \{0, 1\}
 ◦ Interpretation: 1 is “success”; 0 is “failure”
 ◦ Example: coin flip (we let 1 be “heads” and 0 be “tails”)

• A Bernoulli distribution can be defined with a table of the two probabilities:
 ◦ \(X \) denotes the outcome of a coin flip:
 \[
 P(X = 0) = 0.5 \\
 P(X = 1) = 0.5
 \]

 ◦ \(X \) denotes whether or not a TV is defective:
 \[
 P(X = 0) = 0.995 \\
 P(X = 1) = 0.005
 \]
Bernoulli distribution

- Do we need to write out both probabilities?

\[
P(X = 0) = 0.995
\]
\[
P(X = 1) = 0.005
\]

- What if I only told you \(P(X = 1) \)? Or \(P(X = 0) \)?
Bernoulli distribution

• Do we need to write out both probabilities?

\[P(X = 0) = 0.995 \]
\[P(X = 1) = 0.005 \]

• What if I only told you \(P(X = 1) \)? Or \(P(X = 0) \)?

\[P(X = 0) = 1 - P(X = 1) \]
\[P(X = 1) = 1 - P(X = 0) \]

• We only need one probability to define a Bernoulli distribution
 ◦ Usually the probability of success, \(P(X = 1) \).
Bernoulli distribution

Another way of writing the Bernoulli distribution:

- Let θ denote the probability of success ($0 \leq \theta \leq 1$).

 \[P(X = 0) = 1 - \theta \]

 \[P(X = 1) = \theta \]

- An even more compact way to write this:

 \[P(X = x) = \theta^x (1 - \theta)^{1-x} \]

 ○ This is called a *probability mass function*.
A probability mass function (PMF) is a function that assigns a probability to every outcome of a discrete random variable X.

- Notation: $f(x) = P(X = x)$

Compact definition

Example: PMF for Bernoulli random variable $X \in \{0, 1\}$

$$f(x) = \theta^x (1 - \theta)^{1-x}$$

- In this example, θ is called a *parameter*.
Parameters

- Define the probability mass function
- *Free parameters* not constrained by the PMF.
- For example, the Bernoulli PMF could be written with two parameters:
 \[f(x) = \theta_1^x \theta_2^{1-x} \]

 But \(\theta_2 \equiv 1 - \theta_1 \) … only 1 free parameter.
- The *complexity* \(\approx \) number of free parameters. Simpler models have fewer parameters.
Sampling from a Bernoulli distribution

- How to randomly generate a value distributed according to a Bernoulli distribution?
- Algorithm:
 1. Randomly generate a number between 0 and 1
 \[r = \text{random}(0, 1) \]
 2. If \(r < \theta \), return success
 Else, return failure