Fairness, Accountability, and Transparency

Machine Learning: Jordan Boyd-Graber
University of Maryland

BIASED REPRESENTATIONS

Slides/ideas adapted from Adam Tauman Kalai and Moritz Hardt
Our data reflect our world …

- Word representations learned from massive amounts of data
- Reflect prejudices and messiness of our world
- But learned representations used for many tasks
 - Detecting “bad” behavior online
 - Matching resumes to jobs
 - Recommendations
The embedding captures gender stereotypes and sexism.

(related [Schmidt ‘15])
Easier to debias an embedding than to debias a human

DEFINITIONAL

(related [Schmidt ‘15])
Consistency of embedding stereotype

Gender bias in occupation words across embeddings

Each dot is an occupation; Spearman = 0.8

GloVe trained on web crawl

word2vec trained on Google news

 Doesn’t matter source or algorithm
Bias encoded in some dimensions
Analogies

he: x :: she: y

\[
\min \cos(\text{he} - \text{sh}, x - y) \text{s.t.} \|x - y\|_2 < \delta
\] (1)

29/150 analogies rated as gender stereotypic by majority of crowdworkers
Bias Where it Shouldn’t Be

Diagram: A line connecting softball to football, passing through receptioneer, pitcher, and maestro.
Debiasing

218 gender-definitional words
Debiasing
Debiasing

he
king
she
queen
B
B⊥

299 dimensions
Debiasing

stereotypic analogies

appropriate analogies

analogies generated

analogies generated
Debiasing

Original embedding

softball → pitcher → receptionist → maestro → footballer → football

Debiased embedding

softball → pitcher → major leaguer → footballer → midfielder → football
Data are biased . . .

- Our data (societies) are biased
- Can we make algorithms better than the data?
- Can we define fairness for tasks like sentencing, loan approval, etc.
Defining Fairness

What does non-discriminatory mean?

Target y, predictor \hat{y} from features x and protected attribute a.

- Don’t want to remove a
- Don’t want parity $p(\hat{y} | A = a) = p(\hat{y} | A = a')$
Defining Fairness

What does non-discriminatory mean?

Target y, predictor \hat{y} from features x and protected attribute a.

- Don’t want to remove a (correlations, accuracy disparity)
- Don’t want parity $p(\hat{y} | A = a) = p(\hat{y} | A = a')$
Defining Fairness

What does non-discriminatory mean?

Target y, predictor \hat{y} from features x and protected attribute a.

- Don’t want to remove a (correlations, accuracy disparity)
- Don’t want parity $(p(\hat{y} | A = a) = p(\hat{y} | A = a'))$ (doesn’t allow perfect prediction)
 Also, can have accuracy disparity: give loans to qualified $A = 0$ and random $A = 1$
Defining Fairness

What does non-discriminatory mean?

Target y, predictor \hat{y} from features x and protected attribute a.

- Don’t want to remove a (correlations, accuracy disparity)
- Don’t want parity ($p(\hat{y} | A = a) = p(\hat{y} | A = a')$) (doesn’t allow perfect prediction)
- Equalized odds:

$$p(\hat{y} | Y = y, A = a) = P(\hat{y} | Y = y, A = a')$$ \hspace{1cm} (2)

- Perfect predictor always satisfies
- Protects against accuracy disparity
Fairness, Accountability, and Transparency

- Like much of machine learning, we have problems and no clear solutions
- What I’ve presented here are just first steps
- The important thing is to think about data, algorithms, and employing them in a way that thinks through consequences
- Don’t blindly trust algorithms / data