Learn the features and the function

\[a^{(2)}_1 = f\left(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)} \right) \]
Learn the features and the function

\[a_2^{(2)} = f\left(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)} \right) \]
Learn the features and the function

\[
a_3^{(2)} = f\left(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}\right)
\]
Learn the features and the function

\[h_{W,b}(x) = a_1^{(3)} = f\left(W_{11}^{(2)} a_1^{(2)} + W_{12}^{(2)} a_2^{(2)} + W_{13}^{(2)} a_3^{(2)} + b_1^{(2)} \right) \]
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2$$ \hspace{1cm} (1)
Objective Function

- For every example \(x, y \) of our supervised training set, we want the label \(y \) to match the prediction \(h_{W,b}(x) \).

\[
J(W,b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2
\]

(1)

- We want this value, summed over all of the examples to be as small as possible
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) \equiv \frac{1}{2} \| h_{W,b}(x) - y \|^2 \quad (1)$$

- We want this value, summed over all of the examples to be as small as possible.

- We also want the weights not to be too large.

$$\frac{\lambda}{2} \sum_l \sum_{i=1}^{s_l-1} \sum_{j=1}^{s_{l+1}} (W_{ji})^2 \quad (2)$$
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) \equiv \frac{1}{2} \|h_{W,b}(x) - y\|^2$$ \hspace{1cm} (1)

- We want this value, summed over all of the examples to be as small as possible

- We also want the weights not to be too large

$$\frac{\lambda}{2} \sum_l \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2$$ \hspace{1cm} (2)
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) = \frac{1}{2} ||h_{W,b}(x) - y||^2$$ \hspace{1cm} (1)

- We want this value, summed over all of the examples to be as small as possible

- We also want the weights not to be too large

$$\frac{\lambda}{2} \sum_l \sum_i^{s_l-1} \sum_{j=1}^{s_{l+1}} (W_{ji})^2$$ \hspace{1cm} (2)

Sum over all layers
Objective Function

■ For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W,b; x, y) \equiv \frac{1}{2} || h_{W,b}(x) - y ||^2$$ \hspace{1cm} (1)

■ We want this value, summed over all of the examples to be as small as possible

■ We also want the weights not to be too large

$$\lambda \sum_{l} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2$$ \hspace{1cm} (2)

Sum over all sources
Objective Function

- For every example x, y of our supervised training set, we want the label y to match the prediction $h_{W,b}(x)$.

$$J(W, b; x, y) \equiv \frac{1}{2} ||h_{W,b}(x) - y||^2$$ \hspace{1cm} (1)

- We want this value, summed over all of the examples to be as small as possible.

- We also want the weights not to be too large

$$\frac{\lambda}{2} \sum_l \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji})^2$$ \hspace{1cm} (2)

Sum over all destinations
Putting it all together:

\[
J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} ||h_{W,b}(x^{(i)}) - y^{(i)}||^2 \right] + \frac{\lambda}{2} \sum_{l}^{n_l-1} \sum_{s_l}^{s_{l+1}} \sum_{j=1}^{s_l} (W_{ji})^2
\]

(3)
Objective Function

Putting it all together:

$$J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} ||h_{W, b}(x^{(i)}) - y^{(i)}||^2 \right] + \frac{\lambda}{2} \sum_{i=1}^{n_{l-1}} \sum_{s_i}^{s_{i+1}} \sum_{j=1}^{W_{ji}} (W_{ji})^2$$ \hspace{1cm} (3)

- Our goal is to minimize $J(W, b)$ as a function of W and b
Objective Function

Putting it all together:

\[J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji}^l)^2 \] \hspace{1cm} (3)

- Our goal is to minimize \(J(W, b) \) as a function of \(W \) and \(b \)
- Initialize \(W \) and \(b \) to small random value near zero
Objective Function

Putting it all together:

\[
J(W, b) = \left[\frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \| h_{W,b}(x^{(i)}) - y^{(i)} \|^2 \right] + \frac{\lambda}{2} \sum_{l=1}^{n_{l-1}} \sum_{s_l} \sum_{j=1}^{s_{l+1}} (W_{ij}^l)^2 \tag{3}
\]

- Our goal is to minimize \(J(W, b) \) as a function of \(W \) and \(b \)
- Initialize \(W \) and \(b \) to small random value near zero
- Adjust parameters to optimize \(J \)
Gradient Descent

Goal

Optimize J with respect to variables W and b
Deep Learning from Data

Backpropagation

- For convenience, write the input to sigmoid

\[z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(4)

- The gradient is a function of a node's error \(\delta^{(l)} \)

- For output nodes, the error is obvious:

\[\delta^{(n_l)}_i = \frac{\partial}{\partial z^{(n_l)}_i} \left| y - h_w(x) \right|^2 = - (y_i - a^{(n_l)}_i) \cdot f'(z^{(n_l)}_i) \]

(5)

- Other nodes must “backpropagate” downstream error based on connection strength

\[\delta^{(l)}_i = \sum_{j=1}^{n} W_{ij}^{(l+1)} \delta^{(l+1)}_j \cdot f'(z^{(l)}_i) \]

(6)
Backpropigation

- For convenience, write the input to sigmoid

\[z^{(l)}_i = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \]

(4)

- The gradient is a function of a node’s error \(\delta_i^{(l)} \)
Backpropogation

- For convenience, write the input to sigmoid

$$ z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)} \quad (4) $$

- The gradient is a function of a node’s error $\delta_i^{(l)}$
- For output nodes, the error is obvious:

$$ \delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \|y - h_{w,b}(x)\|^2 = -\left(y_i - a_i^{(n_l)}\right) \cdot f'(z_i^{(n_l)}) \frac{1}{2} \quad (5) $$
Backpropagation

- For convenience, write the input to sigmoid

\[
z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)}
\]

(4)

- The gradient is a function of a node’s error \(\delta_i^{(l)}\)

- For output nodes, the error is obvious:

\[
\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \|y - h_{w,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)}) \frac{1}{2}
\]

(5)

- Other nodes must “backpropagate” downstream error based on connection strength

\[
\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)} \right) f'(z_i^{(l)})
\]

(6)
Backpropagation

- For convenience, write the input to sigmoid

\[
z_i^{(l)} = \sum_{j=1}^{n} W_{ij}^{(l-1)} x_j + b_i^{(l-1)}
\]

(4)

- The gradient is a function of a node’s error \(\delta_i^{(l)}\)

- For output nodes, the error is obvious:

\[
\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \|y - h_{w,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)}) \frac{1}{2}
\]

(5)

- Other nodes must “backpropagate” downstream error based on connection strength

\[
\delta_i^{(l)} = \sum_{j=1}^{s_{l+1}} W_{ji}^{(l+1)} \delta_j^{(l+1)} f'(z_i^{(l)})
\]

(6)
Backpropigation

- For convenience, write the input to sigmoid

\[
z^{(l)}_i = \sum_{j=1}^{n} W^{(l-1)}_{ij} x_j + b^{(l-1)}_i
\] (4)

- The gradient is a function of a node’s error \(\delta^{(l)}_i\)
- For output nodes, the error is obvious:

\[
\delta^{(n_l)}_i = \frac{\partial}{\partial z^{(n_l)}_i} \|y - h_{w,b}(x)\|^2 = -\left(y_i - a^{(n_l)}_i\right) \cdot f'(z^{(n_l)}_i) \frac{1}{2}
\] (5)

- Other nodes must “backpropagate” downstream error based on connection strength

\[
\delta^{(l)}_i = \left(\sum_{j=1}^{s_{l+1}} W^{(l+1)}_{ji} \delta^{(l+1)}_j\right) f'(z^{(l)}_i)
\] (6)

(chain rule)
Partial Derivatives

- For weights, the partial derivatives are
 \[
 \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b; x, y) = a_j^{(l)} \delta_i^{(l+1)}
 \]
 \[(7)\]

- For the bias terms, the partial derivatives are
 \[
 \frac{\partial}{\partial b_i^{(l)}} J(W, b; x, y) = \delta_i^{(l+1)}
 \]
 \[(8)\]

- But this is just for a single example . . .
Full Gradient Descent Algorithm

1. Initialize $U^{(l)}$ and $V^{(l)}$ as zero
2. For each example $i = 1 \ldots m$
 2.1 Use backpropagation to compute $\nabla W J$ and $\nabla b J$
 2.2 Update weight shifts $U^{(l)} = U^{(l)} + \nabla W^{(l)} J(W, b; x, y)$
 2.3 Update bias shifts $V^{(l)} = V^{(l)} + \nabla b^{(l)} J(W, b; x, y)$
3. Update the parameters
 \[
 W^{(l)} = W^{(l)} - \alpha \left[\left(\frac{1}{m} U^{(l)} \right) \right]
 \] \quad (9)
 \[
 b^{(l)} = b^{(l)} - \alpha \left[\frac{1}{m} V^{(l)} \right]
 \] \quad (10)
4. Repeat until weights stop changing