First, we can prove that the training error goes down. If we write the error at time \(t \) as \(\frac{1}{2} - \gamma_t \),

\[
\hat{R}(h) \leq \exp \left\{ -2 \sum_t \gamma_t^2 \right\} \tag{1}
\]

- If \(\forall t : \gamma_t \geq \gamma > 0 \), then \(\hat{R}(h) \leq \exp \left\{ -2 \gamma^2 T \right\} \)

AdaBoost: do not need \(\gamma \) or \(T \) a priori
Training Error Proof: Preliminaries

Repeatedly expand the definition of the distribution.

\[
D_{t+1}(i) = \frac{D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\}}{Z_t}
\]

\[
D_{t-1}(i) \exp \{-\alpha_{t-1} y_i h_{t-1}(x_i)\} \exp \{-\alpha_t y_i h_t(x_i)\}
\]

\[
= \frac{Z_{t-1} Z_t}{m \prod_{s=1}^{t} Z_s}
\]

\[
\exp \{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\}
\]

(2)

(3)

(4)
Training Error Intuition

- On round t weight of examples incorrectly classified by h_t is increased
- If x_i incorrectly classified by H_T, then x_i wrong on (weighted) majority of h_t's
 - If x_i incorrectly classified by H_T, then x_i must have large weight under D_T
 - But there can’t be many of them, since total weight ≤ 1
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[y_i g(x_i) \leq 0 \right] \]

Definition of training error
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[y_i g(x_i) \leq 0 \right] \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{-y_i g(x_i)\right\} \]

\[1 \left[u \leq 0 \right] \leq \exp -u \text{ is true for all real } u. \]
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[y_i g(x_i) \leq 0 \right] \]

(5)

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\} \]

(6)

(7)

Final distribution \(D_{t+1}(i) \)

\[D_{t+1}(i) = \frac{\exp \left\{ -y_i \sum_{s=1}^{t} \alpha_s h_s(x_i) \right\}}{m \prod_{s=1}^{t} Z_s} \]

(8)
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1 \left[y_i g(x_i) \leq 0 \right] \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\} \]

\[= \frac{1}{m} \sum_{i=1}^{m} \left(m \prod_{t=1}^{T} Z_t \right) D_{T+1}(i) \]

\(m \)'s cancel, \(D \) is a distribution
Training Error Proof: It’s all about the Normalizers

\[R(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} \left[y_i g(x_i) \leq 0 \right] \] \hspace{1cm} (5)

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \left\{ -y_i g(x_i) \right\} \] \hspace{1cm} (6)

\[= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i) \] \hspace{1cm} (7)

\[= \prod_{t=1}^{T} Z_t \] \hspace{1cm} (8)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\} \] \hspace{1cm} (9)

\[= \] \hspace{1cm} (10)

\[= \] \hspace{1cm} (11)

\[= \] \hspace{1cm} (12)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \tag{9}
\]

\[
= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \tag{10}
\]

\[
= \tag{11}
\]

\[
= \tag{12}
\]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \quad (9) \]

\[= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \quad (10) \]

\[= (1 - \epsilon_t) \exp \{-\alpha_t\} + \epsilon_t \exp \{\alpha_t\} \quad (11) \]

\[= \quad (12) \]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \]
\[= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \]
\[= (1 - \epsilon_t) \exp \{-\alpha_t\} + \epsilon_t \exp \{\alpha_t\} \]
\[= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \] \quad (9)

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2 \sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2} \]
\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2 \sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2} \] \quad (10)

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2 \sqrt{\epsilon_t (1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2} \] \quad (11)
Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2} \tag{9}
\]

\[
\leq \prod_{t=1}^{T} \exp\left\{ -2\left(\frac{1}{2} - \epsilon_t\right)^2 \right\} \tag{10}
\]

(11)
Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2 \sqrt{\epsilon_t(1-\epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t \right)^2}
\]

(9)

\[
\leq \prod_{t=1}^{T} \exp \left\{ -2 \left(\frac{1}{2} - \epsilon_t \right)^2 \right\}
\]

(10)

\[
= \exp \left\{ -2 \sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t \right)^2 \right\}
\]

(11)
Generalization

VC Dimension

\[\leq 2(d + 1)(T + 1) \log [(T + 1)e] \]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an \(L_1 \) margin, and the weak learnability assumption requires data to be linearly separable with margin \(2\gamma \).