Boosting

Machine Learning: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM ROB SCHAPIRE
Motivating Example

Goal

We have a bunch of classifiers; how do we get best possible combination?

- SVM works well on X
- Neural model works well on Y
- Logistic Regression works well on Z
- Hard to know which model to use!
Motivating Example

Goal

We have a bunch of classifiers; how do we get best possible combination?

- SVM works well on X
- Neural model works well on Y
- Logistic Regression works well on Z
- Hard to know which model to use!
- Most Kaggle competitions won using ensemble approaches
Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times
Details

- How to choose examples
- How to combine rules of thumb
Details

- How to **choose** examples
 concentrate on **hardest** examples (those most often misclassified by previous rules of thumb)
- How to **combine** rules of thumb
Details

- How to **choose** examples
concentrate on **hardest** examples (those most often misclassified by previous rules of thumb)

- How to **combine** rules of thumb
take (weighted) majority vote of rules of thumb
Definition

general method of converting rough rules of thumb into highly accurate prediction rule

- assume given weak learning algorithm that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy $\geq 55\%$ (in two-class setting)
- given sufficient data, a boosting algorithm can provably construct single classifier with very high accuracy, say, 99%
Formal Description

- Training set $(x_1, y_1) \ldots (x_m, y_m)$
- $y_i \in \{-1, +1\}$ is the label of instance x_i
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
- For \(t = 1, \ldots T:\)
 - Construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - Find weak classifier
 \[
 h_t : \mathcal{X} \mapsto \{-1, +1\}
 \] (1)
 - with small error \(\epsilon_t\) on \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]
 \] (2)
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
- For \(t = 1, \ldots, T\):
 - Construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - Find weak classifier
 \[h_t : \mathcal{X} \rightarrow \{-1, +1\} \]
 with small error \(\epsilon_t\) on \(D_t\):
 \[\epsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i] \]
 - Output final classifier \(H_{\text{final}}\)
AdaBoost (Schapire and Freund)

- Data distribution D_t
Algorithm

AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\{-\alpha_t y_i h_t(x_i)\}$$

where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

 $$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$

 where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$

 Bigger if wrong, smaller if right
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

 $$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$ \hspace{1cm} (3)

 where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$

 Weight by how good the weak learner is
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$ (3)

where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right) > 0$

- Final classifier:

$$H_{\text{fin}}(x) = \text{sign}\left(\sum_t \alpha_t h_t(x)\right)$$ (4)
Toy Example
Round 1
Round 2

$\epsilon_2 = 0.21$

$\alpha_2 = 0.65$
Round 3

Example

\[h_3 \]

\[\varepsilon_3 = 0.14 \]
\[\alpha_3 = 0.92 \]
Final Classifier

\[H_{\text{final}} = \text{sign} \begin{pmatrix} 0.42 \\ +0.65 \\ +0.92 \end{pmatrix} \]
Generalization

![Graph showing generalization error vs. number of rounds (T). The graph has two curves: one for test error and one for train error. The test error decreases as the number of rounds increases, while the train error decreases rapidly but then plateaus.](image-url)
Generalization

C4.5 test error

(Boosting C4.5 on “letter” dataset)
Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - overfitting
 - weak classifiers too weak ($\gamma_t \to 0$ too quickly)
 - underfitting
 - low margins \to overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise