Boosting

Machine Learning: Jordan Boyd-Graber
University of Maryland
SLIDES ADAPTED FROM ROB SCHAPIRE
Motivating Example

Goal

Automatically categorize type of call requested by phone customer (Collect, CallingCard, PersonToPerson, etc.)

- yes I’d like to place a collect call long distance please (Collect)
- operator I need to make a call but I need to bill it to my office (ThirdNumber)
- yes I’d like to place a call on my master card please (CallingCard)
- I just called a number in sioux city and I musta rang the wrong number because I got the wrong party and I would like to have that taken off of my bill (BillingCredit)
Boosting Approach

- devise computer program for deriving rough rules of thumb
- apply procedure to subset of examples
- obtain rule of thumb
- apply to second subset of examples
- obtain second rule of thumb
- repeat T times
Details

- How to **choose** examples
- How to **combine** rules of thumb
Details

- How to \textit{choose} examples
 concentrate on \textit{hardest} examples (those most often misclassified by previous rules of thumb)
- How to \textit{combine} rules of thumb
Details

- How to **choose** examples
 concentrate on **hardest** examples (those most often misclassified by previous rules of thumb)

- How to **combine** rules of thumb
 take (weighted) majority vote of rules of thumb
Definition

Boosting is a general method of converting rough rules of thumb into highly accurate prediction rules. It relies on the following:

- Assume given a weak learning algorithm that can consistently find classifiers (rules of thumb) at least slightly better than random, say, accuracy ≥ 55% (in two-class setting).
- Given sufficient data, a boosting algorithm can provably construct a single classifier with very high accuracy, say, 99%.
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
- For \(t = 1, \ldots T\):
 - Construct distribution \(D_t\) on \(\{1, \ldots, m\}\)
 - Find weak classifier
 \[
 h_t : \mathcal{X} \rightarrow \{-1, +1\}
 \]
 with small error \(\varepsilon_t\) on \(D_t\):
 \[
 \varepsilon_t = \Pr_{i \sim D_t} [h_t(x_i) \neq y_i]
 \]
Formal Description

- Training set \((x_1, y_1) \ldots (x_m, y_m)\)
- \(y_i \in \{-1, +1\}\) is the label of instance \(x_i\)
- For \(t = 1, \ldots T\):
 - Construct distribution \(D_t\) on \([1, \ldots, m]\)
 - Find weak classifier
 \[
 h_t : \mathcal{X} \mapsto \{-1, +1\}
 \]
 with small error \(\epsilon_t\) on \(D_t\):
 \[
 \epsilon_t = \Pr_{i \sim D_t} \left[h_t(x_i) \neq y_i \right]
 \]
 - Output final classifier \(H_{\text{final}}\)
AdaBoost (Schapire and Freund)

- Data distribution D_t
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp \left\{ -\alpha_t y_i h_t(x_i) \right\}$$

where $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$
AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

 $$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{ -\alpha_t y_i h_t(x_i) \right\}$$

 where $\alpha_t = \frac{1}{2} \ln\left(\frac{1 - \epsilon_t}{\epsilon_t} \right) > 0$

 Bigger if wrong, smaller if right
Algorithm

AdaBoost (Schapire and Freund)

- Data distribution D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:

$$D_{t+1}(i) \propto D_t(i) \cdot \exp\left\{-\alpha_t y_i h_t(x_i)\right\}$$ \hspace{1cm} (3)

where $\alpha_t = \frac{1}{2} \ln\left(\frac{1-\varepsilon_t}{\varepsilon_t}\right) > 0$

Weight by how good the weak learner is
AdaBoost (Schapire and Freund)

- **Data distribution** D_t
 - $D_1(i) = \frac{1}{m}$
 - Given D_t and h_t:
 \[
 D_{t+1}(i) \propto D_t(i) \cdot \exp\{-\alpha_t y_i h_t(x_i)\}
 \]
 where $\alpha_t = \frac{1}{2} \ln \left(\frac{1-\epsilon_t}{\epsilon_t} \right) > 0$

- **Final classifier**:
 \[
 H_{\text{fin}}(x) = \text{sign} \left(\sum_t \alpha_t h_t(x) \right)
 \]
Toy Example
Round 1

\[h_1 \]

\[\varepsilon_1 = 0.30 \]
\[\alpha_1 = 0.42 \]

\[D_2 \]
Round 2

\[\varepsilon_2 = 0.21 \]

\[\alpha_2 = 0.65 \]
Round 3
Example

Final Classifier

$H_{\text{final}} = \text{sign}(0.42 + 0.65 + 0.92)$
Generalization

![Graph showing error vs. number of rounds (T) for training and test data.](image)
Generalization

(boosting C4.5 on “letter” dataset)
Training Error

First, we can prove that the training error goes down. If we write the the error at time t as $\frac{1}{2} - \gamma_t$,

$$
\hat{R}(h) \leq \exp \left\{ -2 \sum_t \gamma_t^2 \right\}
$$

- If $\forall t : \gamma_t \geq \gamma > 0$, then $\hat{R}(h) \leq \exp \{ -2\gamma^2 T \}$

AdaBoost: do not need γ or T a priori
Repeatedly expand the definition of the distribution.

\[
D_{t+1}(i) = \frac{D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\}}{Z_t}
\]

\[
D_{t-1}(i) \exp \{-\alpha_{t-1} y_i h_{t-1}(x_i)\} \exp \{-\alpha_t y_i h_t(x_i)\} \frac{1}{Z_{t-1} Z_t} \cdot \exp \{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\} \frac{1}{m \prod_{s=1}^{t} Z_s}
\]
Training Error Intuition

- On round t weight of examples incorrectly classified by h_t is increased.
- If x_i incorrectly classified by H_T, then x_i wrong on (weighted) majority of h_t's.
 - If x_i incorrectly classified by H_T, then x_i must have large weight under D_T.
 - But there can’t be many of them, since total weight ≤ 1.
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1[y_i g(x_i) \leq 0] \]

Definition of training error
Training Error Proof: It’s all about the Normalizers

\[
\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1} [y_i g(x_i) \leq 0] \leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\} \leq \mathbb{1} [u \leq 0] \leq \exp -u \text{ is true for all real } u.
\]
Training Error Proof: It’s all about the Normalizers

\[
\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} 1[y_i g(x_i) \leq 0]
\]

\[
\leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\}
\]

Final distribution \(D_{t+1}(i)\)

\[
D_{t+1}(i) = \frac{\exp \{-y_i \sum_{s=1}^{t} \alpha_s h_s(x_i)\}}{m \prod_{s=1}^{t} Z_s}
\]
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{1}[y_i g(x_i) \leq 0] \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\} \]

\[= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i) \]

m’s cancel, D is a distribution
Training Error Proof: It’s all about the Normalizers

\[\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}[y_i g(x_i) \leq 0] \]

\[\leq \frac{1}{m} \sum_{i=1}^{m} \exp \{-y_i g(x_i)\} \]

\[= \frac{1}{m} \sum_{i=1}^{m} \left[m \prod_{t=1}^{T} Z_t \right] D_{T+1}(i) \]

\[= \prod_{t=1}^{T} Z_t \]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp\{-\alpha_t y_i h_t(x_i)\} \] \hspace{1cm} (13)

\[= \] \hspace{1cm} (14)

\[= \] \hspace{1cm} (15)

\[= \] \hspace{1cm} (16)
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\} \quad (13) \]

\[= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\} \quad (14) \]

\[= \quad (15) \]

\[= \quad (16) \]
Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp \{-\alpha_t y_i h_t(x_i)\}
\]

\[
= \sum_{i:\text{right}} D_t(i) \exp \{-\alpha_t\} + \sum_{i:\text{wrong}} D_t(i) \exp \{\alpha_t\}
\]

\[
= (1 - \epsilon_t) \exp \{-\alpha_t\} + \epsilon_t \exp \{\alpha_t\}
\]

(13) (14) (15) (16)
Theoretical Analysis

Training Error Proof: Weak Learner Errors

Single Weak Learner

\[
Z_t = \sum_{i=1}^{m} D_t(i) \exp \left\{ -\alpha_t y_i h_t(x_i) \right\} \\
= \sum_{i:\text{right}} D_t(i) \exp \left\{ -\alpha_t \right\} + \sum_{i:\text{wrong}} D_t(i) \exp \left\{ \alpha_t \right\} \\
= (1 - \epsilon_t) \exp \left\{ -\alpha_t \right\} + \epsilon_t \exp \left\{ \alpha_t \right\} \\
= (1 - \epsilon_t) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}}
\]
Training Error Proof: Weak Learner Errors

Single Weak Learner

\[Z_t = \left(1 - \epsilon_t\right) \sqrt{\frac{\epsilon_t}{1 - \epsilon_t}} + \epsilon_t \sqrt{\frac{1 - \epsilon_t}{\epsilon_t}} \quad (13) \]

Normalization Product

\[\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1 - \epsilon_t)} = \sqrt{1 - 4 \left(\frac{1}{2} - \epsilon_t\right)^2} \quad (14) \]

\[(15) \]
Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1 - \epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2} \tag{13}
\]

\[
\leq \prod_{t=1}^{T} \exp \left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\} \tag{14}
\]

\[
\leq \exp \left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\} \tag{15}
\]
Training Error Proof: Weak Learner Errors

Normalization Product

\[
\prod_{t=1}^{T} Z_t = \prod_{t=1}^{T} 2\sqrt{\epsilon_t(1-\epsilon_t)} = \sqrt{1 - 4\left(\frac{1}{2} - \epsilon_t\right)^2}
\]
\leq \prod_{t=1}^{T} \exp\left\{-2\left(\frac{1}{2} - \epsilon_t\right)^2\right\}
\leq \exp\left\{-2 \sum_{t=1}^{T} \left(\frac{1}{2} - \epsilon_t\right)^2\right\}
\]
Generalization

VC Dimension

\[\leq 2(d + 1)(T + 1)\lg[(T + 1)e] \]

Margin-based Analysis

AdaBoost maximizes a linear program maximizes an L_1 margin, and the weak learnability assumption requires data to be linearly separable with margin 2γ.
Practical Advantages of AdaBoost

- fast
- simple and easy to program
- no parameters to tune (except T)
- flexible: can combine with any learning algorithm
- no prior knowledge needed about weak learner
- provably effective, provided can consistently find rough rules of thumb
 - shift in mind set: goal now is merely to find classifiers barely better than random guessing
- versatile
 - can use with data that is textual, numeric, discrete, etc.
 - has been extended to learning problems well beyond binary classification
Caveats

- performance of AdaBoost depends on data and weak learner
- consistent with theory, AdaBoost can fail if
 - weak classifiers too complex
 - overfitting
 - weak classifiers too weak ($\gamma_t \to 0$ too quickly)
 - underfitting
 - low margins \to overfitting
- empirically, AdaBoost seems especially susceptible to uniform noise