Fast Multipole Accelerated Indirect Boundary Elements for the Helmholtz Equation

Nail A. Gumerov
Ross Adelman
Ramani Duraiswami

University of Maryland Institute for Advanced Computer Studies and Fantalgo, LLC

Presented on International Congress of Acoustics, Montreal, Canada, June 6, 2013
Outline

- Introduction
- Boundary Integral Equations
- Analytical Boundary Integrals
- Fast Multipole Method
- Performance study
- Some examples
- Conclusion
Introduction

- Large scale problems, $kD >> 1$, $N_{surf}=O((kD)^2)$
 - Room acoustics
 - Noise in car, aircraft, etc. interiors
 - Design of beamformers
 - Scattering off human/animal head
 - Underwater acoustics
 - More (biotechnologies, medical, etc.)
 - Cannot be handled with conventional BEM (needs acceleration)

- Indirect BEM
 - Thin plates, baffles
 - Openings
 - Simultaneous solution of the internal and external problems (materials with different acoustic properties, dispersed systems)
Helmholtz equation

\[\Delta p(x, t) = \text{Re} \{ e^{-i\omega t} \phi(x) \}, \quad k = \frac{\omega}{C}. \]

\[\nabla^2 \phi + k^2 \phi = 0, \quad x \in V \subset \mathbb{R}^3, \quad k \in \mathbb{R}, \]

For infinite domains (Sommerfeld radiation condition):

\[\lim_{|x| \to \infty} \left(|x| \left(\frac{\partial \phi}{\partial |x|} - ik\phi \right) \right) = 0. \]

+ boundary conditions on the domain boundaries
Boundary Integral Equations

(Closed surfaces, for direct BEM)

Green’s identity:
\[\pm \phi(y) = L[q] - M[\phi], \quad y \notin S, \]
\[\pm \frac{1}{2} \phi(y) = L[q] - M[\phi], \quad y \in S, \]

Single layer potential:
\[L[q] = \int_S q(x)G(x,y)dS(x), \]

Double layer potential:
\[M[\phi] = \int_S \phi(x)\frac{\partial G(x,y)}{\partial n(x)}dS(x), \]

Green’s function:
\[G(x,y) = \frac{e^{ikr}}{4\pi r}, \quad r = |x-y|. \]

Combined (Burton-Miller) BIE:
\[\pm \frac{1}{2} [\phi(y) + \lambda q(y)] = (L + \lambda L')[q] - (M + \lambda M')[\phi], \]

Generic boundary conditions:
\[\alpha(x)\phi(x) + \beta(x)q(x) = \gamma(x). \]

(\(\alpha, \beta, \gamma\) are given)
\[\beta = 0: \text{Dirichlet} \]
\[\alpha = 0: \text{Neumann} \]
\[\alpha, \beta = \text{const: Robin} \]
Boundary Integral Equations
(Arbitrary surfaces, for indirect BEM)

Solution as a sum of single and double layer potentials:

\[\phi(y) = L[\sigma] + M[\mu], \quad y \not\in S, \]

BIE (jump conditions):

\[\phi^\pm(y) = L[\sigma](y) + M[\mu](y) \pm \frac{1}{2} \mu(y), \quad y \in S, \]

\[q^\pm(y) = \mp L'[\sigma](y) \mp M'[\mu](y) + \frac{1}{2} \sigma(y), \quad y \in S. \]

+ Generic boundary conditions on each side

The problem is to determine unknown densities \(\sigma \) and \(\mu \)
Boundary Element Method

1) Discretize the surface (e.g. with a triangular mesh)

2) Compute integrals for each panel

3) Collocate BIE at the collocation points (e.g. panel centers or mesh vertices) and form a linear system of algebraic equations

4) Solve the system

5) Compute potential for arbitrary point in domain
Computation of boundary integrals

- Can be computed numerically using quadratures and special techniques to treat singularities
- Problems may appear for accurate evaluation of nearly singular, weakly singular, singular, and hypersingular integrals
- Evaluation of such integrals should be fast and robust
- We developed analytical methods
Analytical computation of boundary integrals (1)

\[L(y) = \int_S G(|x - y|)dS(x), \quad y \in \mathbb{R}^3, \quad G(\rho) = \frac{\varepsilon^{ik\rho}}{4\pi \rho}. \]

\[M(y) = \int_S \mathbf{n} \cdot \nabla_x G(|x - y|)dS(x), \]

\[L'(y) = \nabla_y \int_S G(|x - y|)dS(x), \]

\[M'(y) = \nabla_y \int_S \mathbf{n} \cdot \nabla_x G(|x - y|)dS(x). \]

Gauss divergence theorem:
Reduce surface integrals to contour integrals

\[L(y) = \int_S \nabla_x \cdot \mathbf{F}(x, y)dS(x) = \int_C \mathbf{n}'(x) \cdot \mathbf{F}(x, y)dl(x). \]

\[\nabla_x \cdot \mathbf{F}(x, y) = G(|x - y|), \quad \nabla_x = i_1 \frac{\partial}{\partial x_1} + i_2 \frac{\partial}{\partial x_2}. \]

\[\mathbf{F}(x, y) = (x - y + h\mathbf{n})\frac{\varepsilon^{ik\rho} - \varepsilon^{ik|\mathbf{y}|}}{4\pi ik\rho^2}, \quad \rho = |x - y|, \quad r = |x - y + h\mathbf{n}|. \]
Analytical computation of boundary integrals (2)

Compute primitives using expansions and recursions

\[\int_{C} \mathbf{n}^i(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}) d\mathbf{l}(\mathbf{x}) = \sum_{j=1}^{n} \int_{C_j} \mathbf{n}^i(\mathbf{x}) \cdot \mathbf{F}(\mathbf{x}) d\mathbf{l}(\mathbf{x}), \]

Line integral

\[I_j = \int_{C_j} \mathbf{n}^i(\mathbf{x}) \cdot \mathbf{F}(\mathbf{r}) d\mathbf{l}(\mathbf{x}) = H(l_j - x', y', z') - H(-x', y', z'), \]

Primitive

\[H(x, y, z') = \frac{-z'}{4\pi ik} \int \frac{e^{ik\rho} - e^{ik\rho'}}{x^2 + z'^2} dx, \quad \rho = \sqrt{x^2 + y^2 + z'^2} \]

Element size is small compared to the wavelength

\[k|\rho - \rho_0| \leq k|x - x_j| \ll \pi \]

\[H(x, y', z') = \frac{1}{4\pi ik} \left[e^{ik\rho'} f_0(x, y', z') - e^{ik\rho_0} \sum_{l=0}^{p-1} \frac{(ik)^l}{l!} a_{p-1}(-ik\rho_0) f_l(x, y', z') \right] + O((k\Delta x)^p) \]

\[f_0 = \text{sgn}(z') \arctan \frac{x}{|z'|}, \]

\[f_1 = y' \text{sgn}(z') \arctan \frac{y'x}{|z'|\rho} + z' \ln|\rho + x|. \]

Other \(f_l \) computed recursively

\[a_1(\xi) = 1, \quad a_{l+1}(\xi) = a_l(\xi) + \frac{\xi l}{l!}. \]
What the FMM does?

• Computes $N \times N$ matrix-vector product, Ax, for cost less than $O(N^2)$ (ideally for $O(N)$ or $O(N \log N)$);

• The catch is in the controlled accuracy (which can be machine precision, or lower for substantial speedups);

• The matrix is decomposed into sparse and dense parts, $A = A_{\text{sparse}} + A_{\text{dense}}$;

• The sparse matrix represents interaction of closely located elements (some neighborhoods); $A_{\text{sparse}}x$ can be computed in $O(N)$ operations and may require $O(N)$ memory;

• The dense matrix represents interaction of far elements (outside the neighborhoods); $A_{\text{dense}}x$ can be computed in $O(N \log^\alpha N)$ operations and requires $O(\log N)$ memory if done efficiently;

Basics of the FMM and specifics for the Helmholtz equation can be found in our book

Standard and Fast Multipole accelerated BEM

<table>
<thead>
<tr>
<th>Task</th>
<th>Standard BEM</th>
<th>FM BEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reformulate the problem in terms of BIE</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Discretize the boundary</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Compute and store boundary integrals</td>
<td>Full storage, memory $\sim(kD)^4$</td>
<td>Partial storage, memory $\sim(kD)^2$</td>
</tr>
<tr>
<td>Solve linear system</td>
<td>If direct $\sim(kD)^6$, iterative $\sim N_{iter} (kD)^4$</td>
<td>Iterative $\sim N_{iter} (kD)^2$, efficient FMM preconditioner</td>
</tr>
</tbody>
</table>

Max solvable problem size (PC): $N \sim 3 \cdot 10^4 (kD \sim 10^2) \quad N \sim 3 \cdot 10^6 (kD \sim 10^3)$
Validation for Sphere and Disk

Sphere, \(N = 2048 \)

Disk, \(N = 1049 \)
Sphere performance

Trading memory for speed

Table 1: Running times and memory usage for different mesh sizes and values of kD.

<table>
<thead>
<tr>
<th>N</th>
<th>kD</th>
<th>t_1 (s)</th>
<th>t_2 (s)</th>
<th>t_3 (s)</th>
<th>mem$_1$ (GB)</th>
<th>mem$_2$ (GB)</th>
<th>mem$_3$ (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50700</td>
<td>83.4</td>
<td>1.29×10^3</td>
<td>354</td>
<td>193</td>
<td>0.31</td>
<td>1.00</td>
<td>5.22</td>
</tr>
<tr>
<td>101568</td>
<td>118</td>
<td>3.19×10^3</td>
<td>592</td>
<td>411</td>
<td>0.62</td>
<td>1.95</td>
<td>5.58</td>
</tr>
<tr>
<td>202800</td>
<td>167</td>
<td>2.06×10^4</td>
<td>4.59×10^3</td>
<td>N/A</td>
<td>1.02</td>
<td>3.54</td>
<td>N/A</td>
</tr>
<tr>
<td>401868</td>
<td>235</td>
<td>N/A</td>
<td>4.59×10^3</td>
<td>N/A</td>
<td>N/A</td>
<td>7.12</td>
<td>N/A</td>
</tr>
</tbody>
</table>

6 elements per wavelength
Error in solution $\sim 1.5\%$
Timing and Memory Usage Data

\[k = CN^{1/2} \]

(\sim 20 \text{ elements per wavenegth})
Rewrite Helmholtz equation in oblate spheroidal coordinates.

A disk can be represented in oblate spheroidal coordinates as the isosurface, $\xi = 0$.

Expand scattered field in terms of oblate spheroidal wave functions

$$\phi^{\text{scat}} = -2 \sum_{n=0}^{\infty} \frac{i^n}{N_{0n}} S_{0n} (-ic, -1) \frac{R_{0n}'(-ic, i0)}{R_{0n}'(-ic, i0)} S_{0n} (-ic, \eta) R_{0n}^{(3)} (-ic, i\xi)$$
Validation: Disk

Analytical Sol. (Real Comp.) along Surface of Disk

Numerical Sol. (Real Comp.) along Surface of Disk

Error (Real Comp.) along Surface of Disk
Validation: Disk

Disk, $k = 10$, Analytical Solution

Disk, $k = 10$, Numerical Solution

Disk, $k = 10$, Percent Error
Example 1: Simulations of scattering from a parabolic antenna and a sphere
Example 2: Computation of acoustic bidirectional reflectance distribution function (BRDF)

Sinusoidal surface
(Case of Sakuma et al, 2009)

diameter = 2.655 m,
amplitude= 0.0256 m.
period = 0.177 m

Incident wave:

\[f = 2 \text{ kHz}, \]
\[\theta' = 31.5^\circ, \]
\[\phi' = 181.5^\circ. \]
Conclusion

- Analytical formulae for boundary integrals are developed and tested. That can be used in any direct or indirect BEM.

- A fast multipole accelerated indirect boundary element method for the Helmholtz equation in 3D is developed and tested.

- The FMM acceleration and memory reduction enables indirect BEM solution with $\sim 10^5$-10^6 elements on a contemporary multicore PCs.

- More work is needed for efficient FMI BEM including hardware acceleration (e.g. graphics processors) and algorithms... this is the subject of our ongoing work.
THANK YOU!