Affordance Detection of Tool Parts from Geometric Features

Abstract

As robots begin to collaborate with humans in everyday workspaces, they will need to understand the functions of tools and their parts. To cut an apple or hammer a nail, robots need to not just know the tool's name, but they must localize the tool's parts and identify their functions. Intuitively, the geometry of a part is closely related to its possible functions, or its affordances. Therefore, we propose two approaches for learning affordances from local shape and geometry primitives: 1) superpixel based hierarchical matching pursuit (S-HMP); and 2) structured random forests (SRF). Moreover, since a part can be used in many ways, we introduce a large RGB-Depth dataset where tool parts are labeled with multiple affordances and their relative rankings. With ranked affordances, we evaluate the proposed methods on 3 cluttered scenes and over 105 kitchen, workshop and garden tools, using ranked correlation and a weighted F-measure score. Experimental results over sequences containing clutter, occlusions, and viewpoint changes show that the approaches return precise predictions that could be used by a robot. S-HMP achieves high accuracy but at a significant computational cost, while SRF provides slightly less accurate predictions but in real-time. Finally, we validate the effectiveness of our approaches on the Cornell Grasping Dataset for detecting graspable regions, and achieve state-of-the-art performance.

Code and Data